Higgs physics and experimental results

Bruno Lenzi

New Trends in High Energy Physics and QCD School, Natal, Brazil

25/10/2014

- Beyond any reasonable doubt, we have discovered a new particle
 - A boson since it decays to bosons!

- Beyond any reasonable doubt, we have discovered a new particle
 - A boson since it decays to bosons!
- Is it a Higgs boson?
 - Scalar ($J^{PC} = 0^{++}$)
 - Its vacuum expectation value is responsible for EW symmetry breaking

"The outcome of the spin analysis has as much suspense as a football game between Brazil and Tonga" (theorist in 2012-3)

Spin analyses

"The outcome of the spin analysis has as much suspense as a football game between Brazil and Tonga" (theorist in 2012-3)

Be prepared for the unexpected!

Spin analyses

- Observation of $H \rightarrow \gamma \gamma$ excludes spin-1 (Landau-Yang theorem)
- Compare SM 0+ hypothesis with alternatives (0⁻, 1[±], 2⁺) via angular distributions / masses in γγ, ZZ^{*} → 4ℓ, WW^{*} → ℓvℓv final states

Spin analyses

- Observation of $H \rightarrow \gamma \gamma$ excludes spin-1 (Landau-Yang theorem)
- Compare SM 0+ hypothesis with alternatives (0⁻, 1[±], 2⁺) via angular distributions / masses in γγ, ZZ^{*} → 4ℓ, WW^{*} → ℓvℓv final states

0⁺ strongly favored, others excluded at > 99% CL

- Beyond any reasonable doubt, we have discovered a new particle
 - A boson since it decays to bosons!
- Is it a Higgs boson?
 - Scalar (J^{PC} = 0⁺⁺)
 - Its vacuum expectation value is responsible for EW symmetry breaking
 - First evidence: large decay rates to WW, ZZ and small to $\gamma\gamma$ (and $Z\gamma$)

cfr: f0(980) J^{PC}=0⁺⁺ and $\Gamma(f0 \rightarrow \gamma \gamma)$ =290 eV, but it's not "a" Higgs

[Michelangelo Mangano]

- Beyond any reasonable doubt, we have discovered a new particle
 - A boson since it decays to bosons!
- Is it a Higgs boson?
 - Scalar (J^{PC} = 0⁺⁺)
 - Its vacuum expectation value is responsible for EW symmetry breaking
 - First evidence: large decay rates into WW, ZZ and small into $\gamma\gamma$ (and $Z\gamma$)
- Is it the SM Higgs boson?
 - Elementary particle, associated to the sole mechanism responsible for the masses of gauge bosons and fermions
 - Couplings, width (lifetime), self-interactions (potential) as predicted by the SM

The SM Higgs boson at the LHC

Higgs boson results: production / decays (CMS)

Higgs boson results: decays (ATLAS)

Decay modes

Higgs boson results: decays (CMS)

Higgs boson results: decays (ATLAS / CMS)

The SM Higgs boson at the LHC

Production mechanisms (events produced)

Higgs couplings scale with mass

Higgs couplings scale with mass

Higgs width

- SM: $\Gamma_H(125 \text{ GeV}) \sim 4 \text{ MeV}$. Detector resolution $\sim 1 \text{ GeV}$
- Need to look for other observables sensitive to width

Higgs width

- SM: $\Gamma_{H}(125 \text{ GeV}) \sim 4 \text{ MeV}$. Detector resolution $\sim 1 \text{ GeV}$
- Need to look for other observables sensitive to width •
 - • On-shell / off-shell $gg \rightarrow H \rightarrow ZZ$ $\sigma_{\mathrm{gg}\to\mathrm{H}^*\to\mathrm{ZZ}}^{\mathrm{off}\mathrm{-shell}} \sim \frac{g_{\mathrm{ggH}}^2 g_{\mathrm{HZZ}}^2}{(2m_Z)^2}$
 - Background from SM ZZ, dominated by qq production
 - Suppressed by matrix element based discriminants

Higgs width

- SM: $\Gamma_H(125 \text{ GeV}) \sim 4 \text{ MeV}$. Detector resolution $\sim 1 \text{ GeV}$
- Need to look for other observables sensitive to width

Higgs decays to invisible particles

ATLAS: BR(inv) < 0.75 (0.62) @ 95% C.L.

CMS: BR(inv) < 0.58 (0.44) @ 95% C.L.

Differential distributions

Kinematics of Higgs production / decay corrected for detector effects (validate theoretical calculations)

 $H \rightarrow ZZ^* \rightarrow 4\ell$

No significant deviations from SM

$H \rightarrow \gamma \gamma$ (summary)

Prospects

- All the measurements seem to indicate that this particle is consistent with the SM Higgs boson
 - Couplings measured to ~30% precision
 - Deviations in the most attractive scenarios of physics beyond the SM ≤ 10%

Prospects

- All the measurements seem to indicate that this particle is consistent with the SM Higgs boson
 - Couplings measured to ~30% precision
 - Deviations in the most attractive scenarios of physics beyond the SM ≤ 10%
- How to go beyond ?
 - Better experimentalists (and theorists) ?
 - More data (luminosity) ?
 - More energy ?
 - Collide different particles ?

Higgs prospects: LHC / HL-LHC

LHC is expected to operate for another ~15y and produce ~100x more data

Higgs prospects: LHC / HL-LHC

- LHC is expected to operate for another ~15y and produce ~100x more data
 - Naively would lead to 10x better coupling determinations but with higher luminosities comes higher pileup → challenging for the detectors

23 additional interactions

230 additional interactions

ATLAS Simulation Preliminary $\sqrt{s} = 14 \text{ TeV}: \int Ldt = 300 \text{ fb}^{-1}; \int Ldt = 3000 \text{ fb}^{-1}$ Η⊸γγ (comb.) **CMS** Projection $H \rightarrow ZZ$ (comb.) Expected uncerta Higgs boson sign $H \rightarrow WW (comb.)$ $H \rightarrow \gamma \gamma$ $H \rightarrow Z\gamma$ (incl.) $H \rightarrow WW$ $H \rightarrow ZZ$ H→ bb (comb.) $H \rightarrow bb$ $H\,{\rightarrow}\,\tau\,\tau$ $H \rightarrow \tau \tau$ (VBF-like) 0.00 H→μμ (comb.) 0.2 0.4 0 Δμ/μ

Higgs physics and experimental results

pp vs. e⁺e⁻ colliders

$pp \rightarrow Z \rightarrow \mu\mu + \sim 25$ interactions

 $e^+e^- \rightarrow Z \rightarrow \mu\mu$

Bruno Lenzi (CERN)

FRONT END MUON SOURCE 6D C

6D COOLING

ACCELERATION RING

Bruno Lenzi (CERN)	
--------------------	--

FRONT END MUON SOURCE 6D (

6D COOLING

ACCELERATION RING

Higgs at e+e- colliders

Bruno Lenzi (CERN)

e⁺e⁻ collision at high energies

Background energy in the detector:

Not so clean anymore but manageable with fast detectors

Future circular colliders (FCC, previously TLEP, VLHC)

- 80 100 km tunnel
- 4 interaction points
- e^+e^- : $\sqrt{s} \sim 240$ and 350 GeV
 - Need top-up injection
- pp: √s up to 100 TeV
 - 20T magnets
- Higgs factory and increased reach for new physics
- Detailed studies of physics case starting

Higgs prospects at LHC and e⁺e⁻ colliders

Facility	LHC	HL-LHC	ILC500	ILC500-up	ILC1000	ILC1000-up	CLIC	TLEP (4 IPs)
$\sqrt{s} ~({\rm GeV})$	$14,\!000$	$14,\!000$	250/500	250/500	250/500/1000	250/500/1000	350/1400/3000	240/350
$\int \mathcal{L} dt \ (\mathrm{fb}^{-1})$	300/expt	3000/expt	250 + 500	1150 + 1600	250 + 500 + 1000	1150 + 1600 + 2500	500 + 1500 + 2000	10,000+2600
κ_γ	5-7%	2-5%	8.3%	4.4%	3.8%	2.3%	$-/5.5/{<}5.5\%$	1.45%
κ_g	6-8%	3-5%	2.0%	1.1%	1.1%	0.67%	3.6/0.79/0.56%	0.79%
κ_W	4 - 6%	2-5%	0.39%	0.21%	0.21%	0.2%	1.5/0.15/0.11%	0.10%
κ_Z	4 - 6%	2 - 4%	0.49%	0.24%	0.50%	0.3%	0.49/0.33/0.24%	0.05%
κ_ℓ	6-8%	2-5%	1.9%	0.98%	1.3%	0.72%	$3.5/1.4/{<}1.3\%$	0.51%
$\kappa_d = \kappa_b$	10-13%	4 - 7%	0.93%	0.60%	0.51%	0.4%	1.7/0.32/0.19%	0.39%
$\kappa_u = \kappa_t$	14 - 15%	7 - 10%	2.5%	1.3%	1.3%	0.9%	3.1/1.0/0.7%	0.69%

The Standard Model (SM) of particle physics

- Unifies special relativity, quantum mechanics and field theory
- Describes electroweak and strong interactions between all known particles
- BEH mechanism gives mass to W,Z bosons (+ fermions)
- Survived last decades of experimental verification
 - Higgs boson was (?) the only missing piece

[Andreas Hoecker]

100 years after the discovery of cosmic rays... The discovery of the Higgs boson completes the Standard Model

imagination and rigour of the human mind, It is a triumph for the greatest experimental undertaking ever: Frontier of accelerator & detector technologies Global data sharing, analysis & collaboration

It is a triumph for the

) Taniguchi, Furari, © Casterman (2012)

and under the provident and