QCD, partons, and all that

A first look at proton structure (DIS) quark-parton model (second look)

RGE, running coupling and the beta function

QCD effects in DIS (third look) DGLAP equations, universal partons (PDFs)

LHC measurements

Alan Martin – IPPP, Durham Emmanuel de Oliveira – UFSC, Florianopolis

Structure of the Proton

Hit it hard with "photon" probe radiated from high energy electron

First, a brief sketch of this interesting story

scaling – independent of Q^2

eg.
$$
\frac{z}{4}
$$
 $\frac{\overline{q}}{q}$ $\frac{\overline{q}}{\overline{q}}$ $\frac{\overline{q}}{q}$ $\frac{\overline{q}}{\overline{q}}$ $\frac{\overline{q}}{\overline{q}}$ $\frac{\overline{q}}{\overline{q}}$ $\frac{\overline{q}}{\overline{q}}$

Consequence: as Q increases, more and more partons are involved. Each parton, on average, must have smaller x.

$$
(\xi p + q)^2 = m_q^2 \simeq 0
$$

$$
2\xi p \cdot q - Q^2 \simeq 0
$$

$$
\xi = \frac{Q^2}{2p \cdot q} = x
$$

As O^2 increases, each parton has, on average, smaller x

Famous experimentalist said to Wilczek: You expect us to measure logarithms ! ? Not in your lifetime, young man!

DIS invariant variables

$$
Q^{2} = -q^{2}
$$
\n
$$
V = \frac{P \cdot q}{M} = E - E'
$$
\n
$$
x = \frac{Q^{2}}{2M\nu} = \frac{Q^{2}}{2p \cdot q}
$$
\n
$$
W^{2} = (p+q)^{2} = M^{2} + \frac{Q^{2}}{x} - Q^{2}
$$
\n
$$
e\ell \text{as}\hslash i c: W^{2} = M^{2} \rightarrow x = 1
$$
\n
$$
\text{inelastic}: W^{2} > M^{2} \rightarrow x < 1
$$
\n
$$
W^{2} = \frac{Q^{2}}{2M^{2}} \rightarrow x < 1
$$

 \bm{k}' E' proton mass M $= (k+p)$ \sim $\frac{q\cdot p}{q\cdot p}$ = $\frac{p}{r}$ $rac{k}{k}$ = $\approx \frac{1}{2}(1 + \omega s \theta)$ e-quark

Deep (Q² >>M²) Inelastic (W²>M²) Scatt.

What exactly do experiments measure in DIS ?

Measure $F_i(x,Q^2)$

How many, $i=1,2...$?

We will assume γ exchange only --- so $F_3=0$ --- come back to this later

$$
\frac{dF}{dx}dQ^{2}(ep+eX) = \frac{2T\alpha^{2}}{xQ^{4}}\left\{ \frac{(1+(1-y)^{2})E_{2}(x,Q^{2})-y^{2}E_{L}(x,Q^{2})}{x^{2}E_{L}(x,Q^{2})}\right\}
$$
\n
$$
s\left\{ \frac{\frac{k}{x^{2}}}{x^{2}}\right\}
$$
\n
$$
s\left\{ \frac{\frac{k}{x^{2}}}{x^{2}}\right\}
$$
\n
$$
s=\frac{2p\cdot q}{s} \text{ To measure both } E_{2} \text{ and } E_{L} \text{ as}
$$
\n
$$
s=(k+p)^{2} \approx 2k+p
$$
\n
$$
s=\frac{(k+p)^{2}}{x^{2}}\approx 2k+p
$$
\n
$$
s=\frac{2p\cdot q}{x^{2}}\text{ To measure both } E_{2} \text{ and } E_{L} \text{ as}
$$
\n
$$
s=\frac{2p\cdot q}{x^{2}}\text{ to the same value of } Q^{2}, \text{ we need}
$$
\n
$$
s=\frac{2p\cdot q}{x^{2}}\text{ to the same value of } Q^{2}.
$$

We will see $F_1 = F_2 - 2xF_1 \approx 0$ so may use QCD to
calculate F_1 - and then expts. weasure $F_2(x, \mathbb{Q}^2)$.

What do the proton structure functions, $F_i(x,Q^2)$, measured in DIS, tell us?

Can we predict their values?

Mandelstam variables for A+B -> C+D

pc

 $S = (p_{A} + p_{B})^{2}$

 $Lor.$ inv.

 $P_A \cdot P_B$

 $Pa·Pc$

 $t = (p_{A} - p_{C})^{2}$

 $u = (p_{A} - p_{D})^{2}$

 $S+U+L = m_A^2 + m_B^2 + m_C^2 + m_D^2$

Quark Parton Model

Basic idea: in proton co-mom^m frame, 8^{*}p interaction at large Q² can be
expressed as sum of incoherent scatt. from pt-like quarks. Over short time
scale 1/1Q2 photon sees state of non-interacting quarks. Hadronizatio long after. on-shell: $D = (\frac{1}{2} + q)^2 = 2p \cdot q = -Q^2$. $\mathbb{E}[\xi=x]$ $\frac{d^2G}{dx dQ^2} = \sum_{q} \int_{0}^{1} df f_q(r) \frac{d^2 G_{eq}}{dx dQ^2}$ $p \rightarrow \infty$ $PDF + f_q$ is prob. of finding quark in $\frac{d\hat{S}_{eq}}{d\hat{I}} = \frac{2\pi\alpha^2e_q^2}{\hat{S}^2}\left(\frac{\hat{S}^2+\hat{u}^2}{\hat{L}^2}\right)^2$ proton with fraction & of its mom." $\hat{s} = (x + k)^2 \approx 2x + k \approx 3cs$ $S = \frac{S}{S}$ $E = -Q^2 = -xyz$ $\hat{u} = -\hat{s} - \hat{t} = -x(1-y)s$ $\frac{d\hat{\sigma}_{eq}}{dx\,d\,Q^2} = \frac{2\pi x^2 e_q^2}{Q^4} \{1 + (1-y)^2\} \delta(x-y)$

Quark parton model : $\frac{d^2S}{dx dQ^2} = \frac{4\pi a^2}{x Q^4} \sum_{q} \int df_q(q) e_q^2 \frac{q}{2} \{1 + (1 - y)^2\} \delta(x - \xi)$ Finsight into y dependence eq scat in c.m. frame $\frac{d\hat{\sigma}_{eq}}{d\hat{\epsilon}} = \frac{2\pi\alpha^2 e_q^2}{\hat{\epsilon}^2} \left(\frac{\hat{\epsilon}^2 + \hat{\mu}^2}{\hat{\epsilon}^2}\right)$ $S = xS$
 $\hat{t} = -xyz$ $\left(1 + (1 - y)^2\right)$ $\simeq 4k^2$ $\hat{t} = -2\vec{k}^2(1-\cos\hat{\theta})$ $\hat{u} = -x(1-y)s$ $\hat{u} = -2k^2 (1 + \omega_0 \hat{\theta})$ $(1 - y)^2$ \therefore $4 = \frac{1}{2}(1 - \omega 8)$ y = 0 forward scatt $y = 1$ backward sealt. e, q, same heliaty eg opp. helicity Must vanish for $\theta = \pi$ ($y = 1$) At HE by conserv["] of J_{Z} HM (fermion helicity conserved at gauge boson vertex) (6.37)

Quark pattern model
\n
$$
\frac{d^2s}{dx dQ^2} = \frac{4\pi a^2}{x Q^4} \sum_{\gamma} \int df_{\gamma}(s) e_q^2 \frac{x}{2} \{1 + (1-y)^2\} \delta(x-\zeta)
$$
\nto be compared with general formula
\n
$$
\frac{d\sigma (e^{\frac{t}{2}}b+e^{\frac{t}{2}})}{dx dQ^2} = \frac{2\pi a^2}{x Q^4} \{Y_{+} F_{2} \mp Y_{-} F_{3} - y^2 F_{1}\} = \frac{Y_{+} \pm 1 + (1-y)^2}{F_{-} \mp 2x F_{1}}
$$
\n
$$
\therefore \frac{F_{2} = 2x F_{1} = \sum_{\gamma} \int_{0}^{1} df_{\gamma}(s) x e_q^2 \delta(x-\zeta) = \sum_{\gamma} e_q^2 x f_{\gamma}(x)
$$
\n
$$
\therefore \frac{F_{2} = 2x F_{1} = \sum_{\gamma} \int_{0}^{1} df_{\gamma}(s) x e_q^2 \delta(x-\zeta) = \sum_{\gamma} e_q^2 x f_{\gamma}(x)
$$
\n
$$
\frac{Gallan-Gross}{sCALING}
$$
\n
$$
\frac{Galless}{s}
$$
\n
$$
\frac{Galless}{s}
$$
\n
$$
\frac{Galless}{s}
$$
\n
$$
F_{+}(x, x^{2})
$$

Flavour sum rules

 $proton = uud +$ 99 pairs "Valence" quaks "Sea quartes (carry q. nos.) When proted at scale Q all flowours $m_q \lesssim Q$ are active Notation: $f_{\mu}(x) \equiv \mu(x) = \mu_{\nu} + \mu_{sea}$ $f_{\bar{\mu}}(x) \equiv \bar{\mu}(x) = u_{sea}$ $\int_{a}^{1}(u-\bar{u}) dx = \int_{a}^{1} u_{v} dx = 2$ $\int_{0}^{1} (d - \bar{d}) dx = \int_{0}^{1} d\gamma dx = 1$ $F_2 = \sum_{\ell} e_{\ell}^2 \propto f_{\ell}(x)$ QPM: $F_2^{ep} = x(\frac{4}{9}u + \frac{1}{9}d + \frac{1}{9}s + ... + \frac{4}{9}\overline{u} + \frac{1}{9}\overline{d} + \frac{1}{9}\overline{s} + ...)$ $F_2^{en} = x(\frac{4}{9}d + \frac{1}{9}u + \frac{1}{9}s + ... + \frac{4}{9}d + \frac{1}{9}\overline{u} + \frac{1}{9}\overline{s} + ...)$ $(u \leftrightarrow d)$

 P contributions \rightarrow then $F_3 \neq 0$ NC: $e^{\pm}b \stackrel{\text{Z}}{\rightarrow} e^{\pm}X$ CC: $e^-p \rightarrow \nu X$ or $\overline{\nu}_{\mu} p \rightarrow \mu^+ X$ $\frac{d\epsilon^{2.5}}{dx dQ^{2}} = \frac{G_{F}^{2}}{2\pi x} \left(\frac{M_{W}^{2}}{Q^{2}+M_{W}^{2}} \right)^{2} \left\{ Y_{+} F_{2}^{2} \pm Y_{-} x F_{3}^{2} - y^{2} F_{L}^{2} \right\}$

$$
\frac{Y_{+} = 1 + (1-y)^{2}}{\sqrt{(1-y)^{2}}} = \frac{Y_{-} = 1 - (1-y)^{2}}{1 + \frac{1}{2} \sqrt{(1-y)^{2}}} = \frac{1}{2} \frac{1}{\sqrt{(1-y)^{2}}} = \frac{1}{2} \frac{1}{
$$

 $\theta_c = 0$

 $e^{\dagger} \overline{u} \rightarrow \overline{\nu} d$ $e^{\dagger} d \rightarrow \overline{\nu} u$ $x(d+\overline{u})$ $x(d-\overline{u})$ 0

RRRRRLRL large $x \begin{cases} \tilde{\sigma}^{cc}(\bar{e p}) & \sim \alpha \mu_{\text{val}} \\ \tilde{\sigma}^{cc}(\bar{e}^{\dagger} p) & \sim (1 - \frac{1}{2}) \alpha \mu_{\text{val}} \end{cases}$ \therefore $\tilde{\sigma}(\epsilon_{\mathsf{P}}) > \tilde{\sigma}(\epsilon_{\mathsf{P}})$

 ϵ ⁻

$$
\frac{\mathsf{NC}: e \mathsf{p} \rightarrow e \mathsf{X}}{\mathsf{F}_2(e \mathsf{p}) = \frac{\mathsf{c}}{\mathsf{p}} e_q^2 \propto q(\mathsf{z})}
$$
\n
$$
\frac{\mathsf{EC}: \mathsf{p} \rightarrow \mathsf{p} \mathsf{X}}{\mathsf{F}_2(\mathsf{p}) = \mathsf{x} (u + \overline{d} + ...)}
$$
\n
$$
\frac{\mathsf{F}_2(e \mathsf{p}) = \mathsf{x} (\frac{4}{9}u + \frac{4}{9}u + \frac{1}{9}d + \frac{1}{9}d + ...)}{\mathsf{F}_2(e \mathsf{p}) = \mathsf{x} (u + \overline{d} + c + \overline{s})}
$$
\n
$$
\frac{\mathsf{F}_2(e \mathsf{p}) = \mathsf{x} (\frac{4}{9}d + \frac{4}{9}d + \frac{1}{9}u + \frac{1}{9}u + ...)}{\mathsf{F}_2(e \mathsf{N}) = \mathsf{x} (d + \overline{u} + c + \overline{s})}
$$
\n
$$
\frac{\mathsf{F}_2(e \mathsf{N})}{\mathsf{p} x \text{ function}} = \frac{\mathsf{F}_2(\mathsf{N})}{\mathsf{F}_2(e \mathsf{N})} \times \frac{\mathsf{F}_2(\mathsf{N})}{\mathsf{F}_2(\mathsf{N})} \qquad \qquad \frac{\mathsf{F}_2(\mathsf{N})}{\mathsf{F}_2(\mathsf{N} \times \mathsf{m} \times \mathsf{m})} \qquad \qquad \frac{\mathsf{F}_2(\mathsf{N})}{\mathsf{F}_2(\mathsf{N} \times \mathsf{m} \times \mathsf{m})} \qquad \qquad \frac{\mathsf{F}_2(\mathsf{N})}{\mathsf{F}_2(\mathsf{N} \times \mathsf{m} \times \mathsf{m})}
$$

 \sim

