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Plan

1. Holographic engineering

• String theory and holographic correspondence
• Gauge sector
• Matter sector
• Sakai-Sugimoto model
• Klebanov-Strassler model

2. Holographic phenomenology
• Glueballs (spectrum)
• Mesons (spectrum/couplings)
• Baryons (couplings/nuclear force/finite density)



Glueballs



Glueballs

Lattice data

Spectrum of a pure glue SU(3) YM was computed on a lattice by
Morningstar and Peardon ’99. SYM? Fermion sign problem



Glueballs

Closed strings

Closed strings don’t have to be localized on branes. Glueballs are
described by fluctuations of the bulk gravity fields



Glueballs

2++ state

Spectra of particles are given by the poles of the 2-point functions

2++ : 〈Tµν(p)Tρη(0) 〉

In holography these can be computed as normal modes of the
fluctuations of the gravity fields:

Tµν ←→ gµν

gµν −→ gµν + hµν

Need to solve linearized gravity equations(
1√
−g

∂z
√
−ggzz∂z − m2

)
hij = 0



Glueballs

Type IIB SUGRA

For Klebanov-Strassler find the normal modes of the linearized eqns

RMN =
1
2
∂MΦ∂NΦ +

1
2

e2Φ∂MC0∂NC0 +
1
4

(
e−ΦHMPQHN

PQ + eΦF̃MPQF̃PQ
N

)
− 1

48
gMN

(
e−ΦHPQRHPQR + eΦF̃PQRF̃PQR

)
+

1
96

F̃MPQRSF̃PQRS
N

d ? dΦ = e2ΦdC0 ∧ ?dC0 −
1
2

e−ΦH3 ∧ ?H3 +
1
2

eΦF̃3 ∧ ?F̃3

d(e2ΦdC0) = −eΦH3 ∧ ?F̃3, d(eΦ ? F̃3) = F5 ∧ H3

?F̃5 = F̃5, d ? (e−ΦH3 − eΦC0F̃3) = −F5 ∧ F3

A bit simpler task for Witten-Sakai-Sugimoto model



Glueballs

Spectrum in Klebanov-Strassler model
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m: KS vs SU(3)

It would be nice to compare with lattice predictions



Mesons in Sakai-Sugimoto



Mesons

Open strings

Mesons come from the open string sector. They are fluctuations of the
D-brane fields



Mesons

Effective action

DBI action

SDBI = −(2πα′)−9/2
∫

D8
d9x e−φ Tr

√
− det(gab + 2πα′Fab)

gab is an induced metric. Changing profile x4(u), changes gab

Chern-Simons actions

Sk = (2πα′)−9/2
∫

D8
e2πα′F ∧ C3



Mesons

Quadratic action for Nf = 1

Aa, a = 0, . . . , 8. Ignore non-singlets of SO(5): AI = 0,

Aµ(x, z) =
∑

n

B(n)
µ (x)ψ(n)(z), Az(x, z) =

∑
n

ϕ(n)(x)ψ(n)(z)

The quadratic part of the DBI action reads

SDBI = −
∫

d4x

1
2

(∂µϕ
(0))2 +

∑
n≥1

1
4

(F(n)
µν )2 +

1
2

m2
nM2

KK(B(n)
µ )2


where m2

n are eigenvalues of a 2nd order diff operator for ψ(n)

Similarly for x4(z)



Mesons

Meson spectrum

• There is a massless pseudoscalar particle ϕ(0)

• A set vector and axial vector mesons

m2
1 = 0.67−−, m2

2 = 1.6++, m2
3 = 2.9−− , . . .

• A tower of massive scalars

m2
1 = 3.3−−, m2

2 = 5.3++, . . .

Compare with known meson spectra

m2
2

m2
1

=
m2

a(1260)

m2
ρ

= 2.4 (2.51),
m2

2

m2
1

=
m2

a0(1450)

m2
ρ

= 4.9 (3.61)



Mesons

Effective action for Nf > 1

Spectrum of mesons does not change for the U(Nf ) case

Introducing U(x) = P exp
(∫∞
−∞Az(x, z)dz

)
in the Az = 0 gauge

SDBI ∝
∫

d4xTr
(
A(U−1∂µU)2 + B[U−1∂µU,U−1∂νU]2

)
This is a Skyrme model Lagrangian provided that

f 2
π =

1
54π2 M2

KKλNc , e2 =
27π7

2bλNc

Full Lagrangian also contains vector meson fields



Mesons

Meson couplings

Restricting to the lightest vector meson, one can derive

SDBI =

∫
d4x
[
−a2

πTr (∂µπ)2 + av2

(
1
2

Tr (∂µvν − ∂νvµ)2 + m2
vTr v2

µ

)
+av3 Tr ([vµ, vν ](∂µvν − ∂νvµ))+avπ2 Tr ([∂µπ, ∂νπ](∂µvν − ∂νvµ))+. . .

]

U(x) = e2iπ(x)/fπ

All the couplings are fixed in terms of fπ and masses:

f 2
πav3avπ2 = 0.72 (1) , m2

va2
vπ2 f 2

π = 1.3 (2)



Baryons in Sakai-Sugimoto Model



Baryons

Strings and baryons
Baryon must correspond to a point where Nc strings can end (baryon
vertex), joining Nc quarks on the opposite ends. Such objects must
carry Nc units of charge. These can be D-branes wrapped on compact
cycles. In a background with a flux of p-form through a p-cycle∫

Cp

Fp = Nc

p-brane wrapped on the cycle picks a charge Nc from the U(1) field:∫
Dp

a ∧ Fp = Nc

∫
a

To compensate the excess of charge on the compact manifold, it must
be carried away by Nc strings



Baryons

Baryons and instantons

In Sakai-Sugimoto model baryons are D4-branes wrapping S4

0 1 2 3 4 5 6 7 8 9
D4 ◦ ◦ ◦ ◦ ◦
D4 ◦ ◦ ◦ ◦ ◦

D8/D8 ◦ ◦ ◦ ◦︸ ︷︷ ︸
M1,3

︸︷︷︸
S1

◦︸︷︷︸
R+

◦ ◦ ◦ ◦︸ ︷︷ ︸
S4

Strings that connect D4-baryon and D8-branes pull them towards each
other. In the end D4-branes “dissolve” in the D8-brane and can be
described as instantons of the gauge fields on the D8-branes



Baryons

Effective action

• DBI action – generalization of the relativistic particle action

SDBI = − 1

(2π)pα′
p+1

2

∫
Dp

dp+1x e−ΦTr
√
− det(g + 2πα′F)

• Chern-Simons action – generalization of the Coulomb coupling

SCS =

∫
Dp

C ∧ exp(2πα′F)

Here F = dA+A ∧A are U(N) fields living on the Dp branes. For
mesons we looked at F = 0 background. Baryons are solitons



Baryons

Effective action (Nf = 2)

U(Nf ) gauge fields: AM = AM +
1
2

ÂM

S = −κ
∫

d5x
1

2g2
YM(x5)

Tr F2
MN + e

∫
Â ∧ Tr F ∧ F + S[Â]

κ =
λNc

216π3 , e =
Nc

15π2

This action is NLO in α′ (λ−1)



Baryons

Dynamics

Baryons are subject to a Coulomb force mediated by Âµ field and to a
gravitational potential

1
g2

YM(x5)
∝ 1 + cM2

KKx2
5 + O(M4

KKx4
5)

It is consistent to look for solutions in 1/λ expansion. In the leading
order baryon is a BPS (BPST) instanton. Interactions are 1/λ
suppressed.

As a result of a competition between gravity force and Coulomb
force, the size of the instanton-baryon stabilizes at

a ∼ 1√
λMKK



Baryons

Properties of baryons

• mB ∼ λNc – in the leading order baryons are pure YM instantons
• Π ∼ Nc – baryon interaction is O(1/λ) correction to the rest

energy.
• a ∼ 1/MKK

√
λ – holographic baryons are very small

Consequences for holographic nuclear matter
• K ∼ 1

mB
� Π – at finite density holographic baryons are crystals

• Small binding energy



Baryons

Baryon spectra

Instanton solutions depend on parameters (position, size and
orientation). Plugging a solution in the effective action one finds the
effective Hamiltonian for the parameters. Quantizing the
Hamiltonian, one derives the spectrum

M = M0 +

√
(l + 1)2

6
+

2
15

N2
c +

2(nρ + nz) + 2√
6

Here nz, nρ = 0, 1, 2, . . . are quantum numbers related to the position
in the holographic direction and the size

l is the orientation quantum number. It labels (l/2, l/2) irreps of the
SO(4) ' SU(2)× SU(2)/Z2



Baryons

Static properties

Using the techniques of Skyrme model various static properties can
be computed: magnetic moments, charge radii, meson couplings. One
can also derive baryon form-factors.

〈r2〉1/2
I=0 ' 0.785 fm (0.806), MKK = 949 MeV

gI=0 ' 1.68 (1.76), MN = 940 MeV

〈r2〉1/2
E,p = 〈r2〉1/2

I=0 (0.875), MKK = 949 MeV

〈r2〉E,n = 0 (−0.116), MKK = 949 MeV

Overall performance comparable is to other hadron physics models



Baryons

Walecka’s model

In the effective model of a baryon coupled to massive vector (ω) and
scalar (σ) fields the non-relativistic baryon-baryon potential reads

V =
1

4π

(
g2
ω

e−mω |x|

|x|
− g2

σ

e−mσ |x|

|x|

)
The interaction is attractive at large distances if mσ < mω and
repulsive at short distances if gσ < gω



Baryons

Holographic nuclear force

In Sakai-Sugimoto model mσ > mω, so repulsion will always win at
large distances. How about the coupling?

S = − λNc

216π3

∫
d4x dz

1
2g2

YM(z)

(
Tr F2

µν +
1
2

F̂2
µν

)
+

1
2

(∂µΦ)2+

+
Nc

8π2

∫
d4x dz Â ∧ Tr F2 +

Nc

6π2

∫
d4x dz ΦTr F2

The net effect of Φ is to renormalize the vector meson coupling. The
coupling gσ is always smaller. No attractive nuclear force in
Sakai-Sugimoto model



Phenomenology of KS model



Klebanov-Strassler Model

Adding flavor

Add Nf probe (Nf � Nc) D7 and anti-D7 "flavor" branes

Configuration in R1,3 × R+ × S3 × S2:

0 1 2 3 4 5 6 7 8 9
D3 ◦ ◦ ◦ ◦
D5 ◦ ◦ ◦ ◦ ◦ ◦

D7/D7 ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

The D7 wrap S3 and span a line in R+ × S2. By symmetry
transformation one can always restrict them to the equator of S2

Stable embeddings correspond to U-shape configurations



Klebanov-Strassler Model with Flavor

Embedding

Effectively the embedding of D7-D7 is again a U-shape configuration
on a cigar

S3 S2

D7

rε

S2

S3 S2

D7

rε

r0

• rε ≡ ε2/3 – sets the scale (MKK)
• r0 – lowest point of the U-shape



Klebanov-Strassler Model

Spectrum

Closed string sector contains glueballs

mgb =
rε
λα′

In the probe approximation we ignore corrections to glueball masses.

Typical meson mass scales as

mmeson ∼
r0

λα′
=

r0

rε
mgb

This is the result in the conformal limit. Corrections to this result in
the KS case can be ignored if r0 � rε. If r0 ' rε, mmeson ∼ mgb
anyway



Klebanov-Strassler Model

Pseudo-Goldstone mode

In the KS background the conformal symmetry is broken explicitly.
Therefore the Goldstone boson should acquire a small mass, different
from the mass of other mesons

mpG ∼
r3
ε

r2
0λα

′ =
r2
ε

r2
0

mgb

This is similar to pions in QCD. If the quarks were massless QCD
would have chiral symmetry U(Nf )L×U(Nf )R, which is spontenously
broken down to U(Nf ). Pions would be Goldstone bosons of the
broken symmetry. Because of the quark mass, chiral symmetry is
broken explicitly and pions are light pseudo-Goldstone particles.



Klebanov-Strassler Model

Summary

Spectrum in the rε � r0 case
• glueballs, including a pair of massless ones
• ordinary mesons m ∼ (r0/rε)mgb

• pseudo-Goldstone (σ) m ∼ (rε/r0)2mgb

• massless pions (fluctuations of Az)

Taking r0 large enough one can always have mσ < mω. However
r0 ∼ rε case is more interesting



Klebanov-Strassler Model

Baryons

Baryon vertex corresponds to a D3 wrapping the S3 of the conifold

1
4π2α′

∫
S3

F3 = M

M strings pull the b.v. to the D7. The energy of the configuration

r0 � rε (non-antipodal)

Etotal =
M
α′

(Ar log r + B|r0 − r|)

gravity wins. b.v. is far from
D7

r0 ∼ rε (near antipodal)

Etotal =
Mrε
α′

(C + D|τ0 − τ |)

strings win. b.v. dissolves in
D7



Klebanov-Strassler Model

Strings vs Instantons

r0

rε

D7

b.v.

S2

r

F1

r0rε

D7

b.v.

S2

Non-antipodal and near antipodal regimes. Only in the second case
one can describe baryons as flavor instantons at the D7. In both cases
we can consider b.v. as sitting around the scale rε.



Klebanov-Strassler Model

Meson contribution in the non-antipodal case

σ

transverse fluctuations of the
profile δr0. Coupling to the
strings is simply a variation of
the string’s length

Sstring[δr0] ∼ M
α′

∫
dx0 δr0

ω

Vector meson coupling is a
boundary term in the string ac-
tion

M
∫

Â

Â is the abelian field on the D7



Klebanov-Strassler Model

Meson contribution in the near-antipodal case

σ

Interaction of σ with baryon
density is generated by the non-
abelian term in the effective ac-
tion

Sna ∼
gsMα′rε

gsα′2

∫
dx0 σ

ω

Vector meson coupling arises
from the CS term in the effec-
tive action

SCS ∼ M
∫

d4x dz Â0
εijk

2
Tr (FijFkz)

∼ M
∫

dx0 Â0



Klebanov-Strassler Model

Contribution to the baryon-baryon potential

1. non-antipodal case

V ∼ ± 1
gs log r0

e−mmeson|x|

|x|

• g−1
s times bigger than the glueball contribution

2. near-antipodal case

V = ±g2
meson

4πgs

e−mmeson|x|

|x|
• Coupling constant of the scalar vanishes in the antipodal case. It

is small in the near-antipodal regime



Klebanov-Strassler Model

Summary of the holographic nuclear force

• The large distance potential of the interaction through lightest
meson exchanges:

V =
1

4πgs

(
g2
ω

e−mω |x|

|x|
− g2

σ

e−mσ |x|

|x|

)

• In the non-antipodal regime force between two baryons can be
made attractive by tuning the mass of the pseudo-Goldstone
lighter than the mass of ω. Short distance repulsion is not
guaranteed. No natural suppression for the binding energy

• In the near-antipodal regime the difference between mass of σ
and ω is small. gσ is suppressed – short distance repulsion.
Small binding energy is possible



Conclusions

• String theory can model many interesting features of hadron
physics. A lot of non-perturbative data can be computed from the
first principles

• If one is to push to match with experimental results, one has to
hide something under the rug

• Adopting a bottom-up approach, one can do as good as
conventional hadron physics models

• This suggests that a mixture of the conventional and stringy
approaches can be successful in addressing hadron physics
problems


