Cosmology: Lecture #1 Present Universe: main ingredients and the expansion law

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

New Trends in High Energy Physics and QCD

> IIP Natal, Brazil

Standard Model: Success and Problems

Gauge fields (interactions):
$$\gamma$$
, W^{\pm} , Z , g
Three generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- Describes
 - all experiments dealing with electroweak and strong interactions
- Does not describe (PHENO)
 - Neutrino oscillations
 - ▶ Dark matter (Ω_{DM})
 - ▶ Baryon asymmetry (Ω_B)
 - Inflationary stage

(THEORY)

- ▶ Dark energy (Ω_{Λ})
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity

Must explain all above

???

Outline

- General facts and key observables
- Evidences for Dark Matter in astrophysics and cosmology
- Mystery of Dark Energy
- Redshift and the Hubble law

"Natural" units in particle physics

$$\hbar = c = k_{\rm B} = 1$$

measured in GeV: energy E, mass M, temperature T

$$m_D = 0.938 \text{ GeV}, 1 \text{ K} = 8.6 \times 10^{-14} \text{ GeV}$$

measured in GeV^{-1} : time t, length L

$$1 \text{ s} = 1.5 \times 10^{24} \text{ GeV}^{-1}$$
. $1 \text{ cm} = 5.1 \times 10^{13} \text{ GeV}^{-1}$

Gravity (General Relativity):
$$V(r) = -G\frac{m_1 m_2}{r}$$
 [G] = M^{-2}

$$M_{\rm Pl} = 1.2 \times 10^{19} \, {\rm GeV} = 22 \, \mu {\rm g}$$

$$G \equiv \frac{1}{M^2}$$

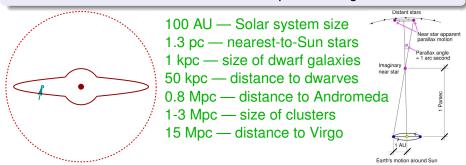
"Natural" units in cosmology

1 Mpc = 3.1×10^{24} cm

1 AU =
$$1.5 \times 10^{13}$$
 cm
1 ly = 0.95×10^{18} cm

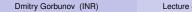
1 pc =
$$3.3 \text{ ly} = 3.1 \times 10^{18} \text{ cm}$$

mean Earth-to-Sun distance distance light travels in one year $1 \text{ yr} = 3.16 \times 10^7 \text{ s}$ distance to object which has a parallax angle of one arcsec



Outline

- General facts and key observables
- Evidences for Dark Matter in astrophysics and cosmology
- Mystery of Dark Energy
- Redshift and the Hubble law



Universe is expanding

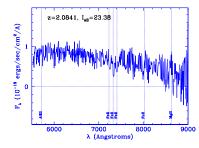
 $L \propto a(t)$ Doppler redshift of light $n \propto a^{-3}(t)$ $H(t) = \frac{\dot{a}(t)}{a(t)}$ Hubble @\ parameter Hubble Law $H(t_0) r = v_r$

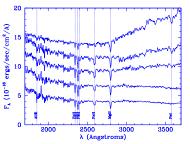
Expansion: redshift z

$$z \ll 1$$
 Hubble law : $z = H_0 r$

$$H_0 = h \cdot 100 \frac{\text{km}}{\text{s} \cdot \text{Mpc}}, \quad h \approx 0.68$$

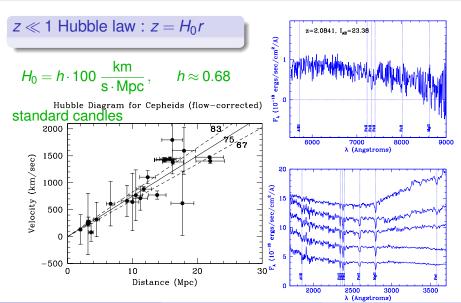
$\lambda_{\rm abs.}/\lambda_{\rm em.} \equiv 1+z$



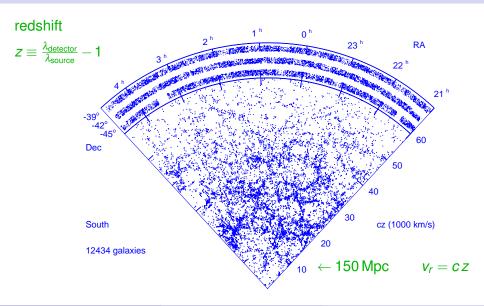


Expansion: redshift z

$$\lambda_{\rm abs.}/\lambda_{\rm em.} \equiv 1+z$$



Universe is homogeneous and isotropic



The Universe: age & geometry & energy density

$$[H_0] = L^{-1} = t^{-1}$$

time scale:
$$t_{H_0} = H_0^{-1} \approx 14 \times 10^9 \text{ yr}$$

age of our Universe

spatial scale: $I_{H_0} = H_0^{-1} \approx 4.3 \times 10^3 \text{ Mpc}$

size of the visible Universe

 t_{H_0} is in agreement with various observations

homogeneity and isotropy in 3d:

flat, spherical or hyperbolic

nat, opnenear or riyperbene

"very" flat

 $R_{curv} > 10 \times I_{H_0}$

order-of-magnitude estimate:

 $GM_U/I_U \sim G\rho_0 I_{H_0}^3/I_{H_0} \sim 1$

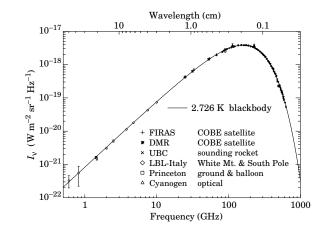
flat Universe

Observations:

$$ho_{c} = rac{3}{8\pi} H_{0}^{2} M_{\text{Pl}}^{2} pprox 0.53 imes 10^{-5} rac{\text{GeV}}{\text{cm}^{3}}$$

 \longrightarrow 5 protons in each 1 m^3

Universe is occupied by "thermal" photons



 $T_0 = 2.726 \text{ K}$

the spectrum (shape and normalization!) is thermal

$$n_{\gamma} = 411 \text{ cm}^{-3}$$

Conclusions from observations

The Universe is homogeneous, isotropic, hot and expanding...

Conclusions

interval between events gets modified

$$\Delta s^2 = c^2 \Delta t^2 - a^2(t) \Delta \mathbf{x}^2$$

in GR expansion is described by the Friedmann equation

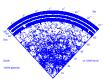
$$\left(\frac{\dot{a}}{a}\right)^2 = H^2(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$

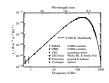
 $\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}} + \dots$

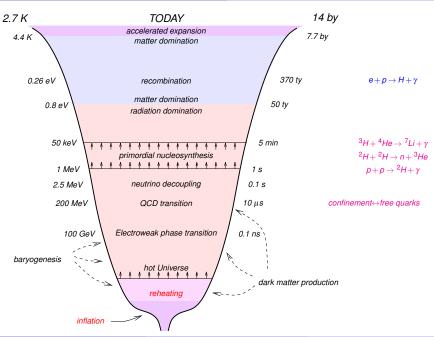
in the past the matter density was higher, our Universe was "hotter" filled with electromagnetic plasma

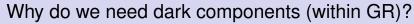
$$\rho_{\text{matter}} \propto 1/a^3(t), \ \rho_{\text{radiation}} \propto 1/a^4(t), \ \rho_{\text{curvature}} \propto 1/a^2(t)$$

certainly known up to $\textit{T} \sim 1\,\text{MeV} \sim 10^{10}\,\text{K}$







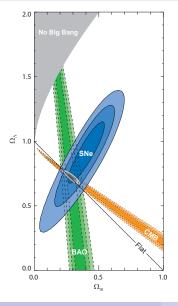


- Astrophysical data favor Dark Matter
 - Observations in galaxies
 - Observations in galaxy clusters
- Cosmological data favor Dark Matter and Dark Energy
 - Observation of objects at cosmological distances (far=early)
 - Baryonic Aciustic (Sakharov) Oscillations (BAO) in two-point galaxy correlation function
 - Evolution of galaxy clusters in the Universe
 - Anisotropy of Cosmic Microwave Background (CMB)

Outline

- Evidences for Dark Matter in astrophysics and cosmology

Astrophysical and cosmological data are in agreement



$$\rho_{\Lambda} = {\rm const}$$

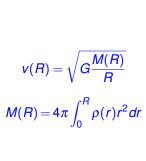
$$\frac{3H_0^2}{8\pi G} = \rho_{\rm density}^{\rm energy}(t_0) \equiv \rho_c \approx 0.53 \times 10^{-5} \, {\rm GeV \over cm^3}$$

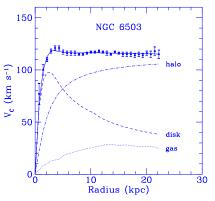
radiation:
$$\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4}$$
 Baryons (H, He):
$$\Omega_{B} \equiv \frac{\rho_{B}}{\rho_{c}} = 0.05$$
 Neutrino:
$$\Omega_{V} \equiv \frac{\sum \rho_{Vi}}{2} < 0.01$$

Dark matter:
$$\Omega_{\text{DM}} \equiv \frac{\rho_{\text{DM}}}{\rho_{\text{C}}} = 0.27$$
 Dark energy:
$$\Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_{\text{C}}} = 0.68$$

Galactic dark halos:

flat rotation curves





observations:

 $v(R) \simeq \text{const}$

visible matter:

internal regions $v(R) \propto \sqrt{R}$ external ("empty") regions $v(R) \propto 1/\sqrt{R}$

Dark Matter in clusters

X-rays from hot gas in clusters

$$\frac{dP}{dR} = -\mu n_e(R) m_\rho \frac{GM(R)}{R^2} \; , \quad M(R) = 4\pi \int_0^R \rho(r) r^2 dr \; , \quad P(R) = n_e(R) T_e(R)$$

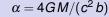
galaxies in clusters

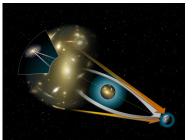
virial theorem

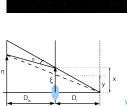
$$U + 2E_k = 0$$
$$3M\langle v_r^2 \rangle = G \frac{M^2}{B}$$

Milky Way: Virgo infall

Gravitational lensing in GR:





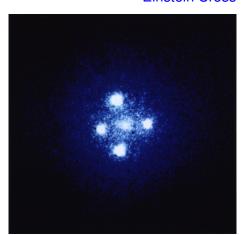


$$ec{\eta} = rac{D_{ extsf{S}}}{D_{ extsf{I}}} ec{\xi} - D_{ extsf{I} extsf{S}} ec{lpha} \left(ec{\xi}
ight)$$

common lens with specific refraction coefficient

$$\vec{\alpha}\left(\vec{\xi}\right) = \frac{4G}{c} \int \frac{\vec{\xi} - \vec{\xi}'}{\left|\xi - \vec{\xi}'\right|^2} d^2 \xi' \int \rho\left(\vec{\xi}', z\right) dz$$

Einstein Cross

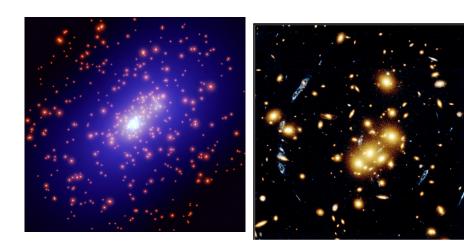


source: quasar $D_s = 2.4$ Gpc lens: galaxy $D_l = 120$ Mpc

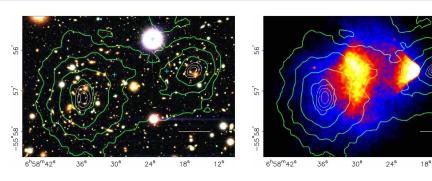
Dark Matter in clusters

gravitational lensing

 $ho_{\scriptscriptstyle B} pprox 0.25
ho_{DM}$



Colliding clusters (Bullet clusters 1E0657-558)



gravitational lensing

Observations in X-rays $M \simeq 10 \times m$

scale is 200 kpc clusters are at 1.5 Gpc

Dark Matter Properties

p=0

(If) particles:

- stable on cosmological time-scale
- nonrelativistic long before RD/MD-transition (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$)
- (almost) collisionless
- (almost) electrically neutral

If were in thermal equilibrium:

 $M_X \ge 1 \text{ keV}$

If not:

for bosons $\lambda = 2\pi/(M_{\rm X}v_{\rm X})$, in a galaxy $v_{\rm X} \sim 0.5 \cdot 10^{-3} \longrightarrow M_{\rm X} \gtrsim 3 \cdot 10^{-22} \ {\rm eV}$

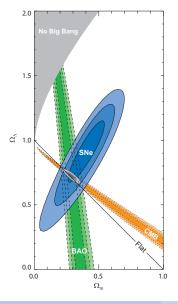
for fermions

Pauli blocking:

 $M_{\rm x} \ge 750 \; {\rm eV}$

$$f(\mathbf{p}, \mathbf{x}) = \frac{\rho_{\mathsf{X}}(\mathbf{x})}{M_{\mathsf{X}}} \cdot \frac{1}{\left(\sqrt{2\pi}M_{\mathsf{X}}v_{\mathsf{X}}\right)^{3}} \cdot e^{-\frac{\mathbf{p}^{2}}{2M_{\mathsf{X}}^{2}v_{\mathsf{X}}^{2}}} \bigg|_{\mathbf{p}=0} \leq \frac{g_{\mathsf{X}}}{(2\pi)^{3}}$$

Astrophysical and cosmological data are in agreement



$$\begin{split} \left(\frac{\dot{a}}{a}\right)^2 &= H^2\left(t\right) = \frac{8\pi}{3} \; G \rho_{\text{density}}^{\text{energy}} \\ \rho_{\text{density}}^{\text{energy}} &= \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda} \\ \rho_{\text{radiation}} &\propto 1/a^4(t) \propto T^4(t) \;, \quad \rho_{\text{matter}} \propto 1/a^3(t) \end{split}$$

$$rac{3 extit{H}_0^2}{8 \pi G} =
ho_{ ext{density}}^{ ext{energy}}(t_0) \equiv
ho_{ extit{c}} pprox 0.53 imes 10^{-5} \, rac{ ext{GeV}}{ ext{cm}^3}$$

 $\rho_{\Lambda} = \text{const}$

radiation:
$$\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4} \\ \text{Baryons (H, He):} \qquad \qquad \Omega_{\text{B}} \equiv \frac{\rho_{\text{B}}}{\rho_{c}} = 0.05 \\ \text{Neutrino:} \qquad \qquad \Omega_{\nu} \equiv \frac{\Sigma \rho_{\nu i}}{\rho_{c}} < 0.01$$

Dark matter:
$$\Omega_{\rm DM} \equiv \frac{\rho_{\rm DM}}{\rho_{\rm c}} = 0.27$$
 Dark energy:
$$\Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_{\rm c}} = 0.68$$

Determination of a(t) reveals the composition of the present Universe

$$\Delta s^2 = c^2 \Delta t^2 - \frac{a^2}{(t)} \Delta \vec{x}^2 \rightarrow ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu}$$
How do we check it?

Light propagation changes... by measuring distance *L* to an object!

• Measuring angular size θ of an object of known size d

single-type galaxies

$$\theta = \frac{d}{L}$$

• Measuring angular size $\theta(t)$ corresponding to physical size d(t) with known evolution

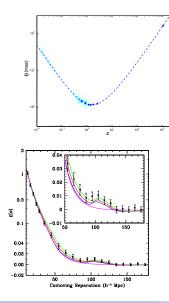
$$\theta(t) = \frac{d(t)}{L}$$

Measuring brightness J of an object of known luminosity F

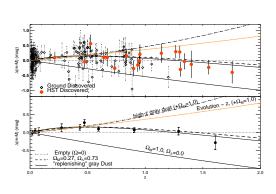
"standard candles"

In the expanding Universe all these laws get modified

Results of distance measurements



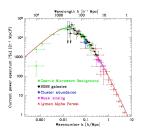
$$\Delta(m-M) = 5\log \frac{r_{ph}}{r_{ph}(\Omega_C = 0.8, \Omega_M = 0.2)}$$

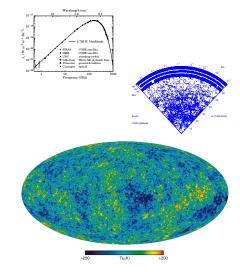


Key observable: matter perturbations

- CMB is isotropic, but "up to corrections, of course..."
 - 1 Earth movement with respect to CMB $\frac{\Delta^T \text{dipole}}{\Delta^T \text{dipole}} \sim 10^{-3}$
 - More complex anisotropy! $\frac{\Delta T}{T} \sim 10^{-4} 10^{-5}$

- There were matter inhomogenities $\Delta \rho/\rho \sim \Delta T/T$ at the stage of recombination $(e+\rho \rightarrow \gamma + H^*)$
- Jeans instability in the system of gravitating particles at rest ⇒ Δρ/ρ → ⇒ galaxies (CDM halos)

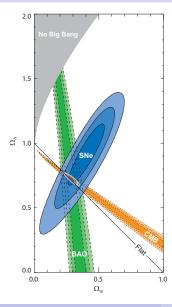




Outline

- General facts and key observables
- Evidences for Dark Matter in astrophysics and cosmology
- Mystery of Dark Energy
- Redshift and the Hubble law

Dark Energy: nonclumping matter?



- estimates of Matter contribution confined in galaxies and clusters $\rho_c \rho_M \neq 0$ but the Universe is flat, so $\rho_{curv} \simeq 0$
- corrections to the Hubble law: red shift brightness curves for standard candles (SN Ia)
- The age of the Universe
- CMB anisotropy, large scale structures (galaxy clusters formation), etc

$$\rho_{\Lambda} = 0.68 \rho_{c}$$

$$\rho_{\Lambda} \sim 10^{-5}~\text{GeV/cm}^3 \sim \left(10^{-11.5}~\text{GeV}\right)^4$$

Dark Energy: all evidences are from cosmology

Working hypothesis is cosmological constant $\Lambda \approx (2.5 \times 10^{-3} \, \text{eV})^4$: $p = w(t)\rho$, w = const = -1, $\rho = \Lambda$

$$S_{\Lambda} = -\Lambda \int d^4x \, \sqrt{-{
m det}\, g_{\mu
u}}$$

both parts contribute

$$S_{
m grav} = -rac{1}{16\pi G}\int d^4x\, \sqrt{-{
m det}\,g_{\mu
u}}\, R\,, \ S_{
m matter} = \int d^4x\, \sqrt{-{
m det}\,g_{\mu
u}}\, \left(rac{1}{2}\,g^{\lambda
ho}\,\partial_\lambda\phi\,\partial_
ho\phi - V(\phi)
ight)$$

natural values

$$\Lambda_{\text{grav}} \sim 1/\textit{G}^2 \sim \left(10^{19}\,\text{GeV}\right)^4\,, \quad \Lambda_{\text{matter}} \sim \textit{V}\left(\phi_{\textit{vac}}\right) \sim \left(100\,\text{GeV}\right)^4, \left(100\,\text{MeV}\right)^4, \ldots$$

Why Λ is small?

Why $\Lambda \sim \rho$?

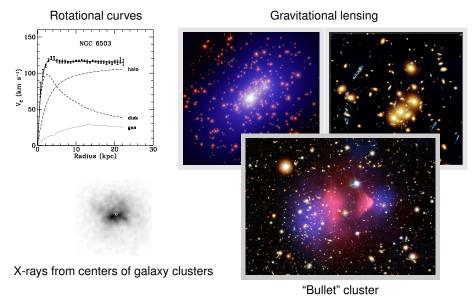
Why $\rho_B \sim \rho_{DM} \sim \rho_{\Lambda}$ today?

$$\left(rac{\dot{a}}{a}
ight)^2 = H^2\left(t
ight) = rac{8\pi}{3}\,G
ho_{
m density}^{
m energy}$$
 $ho_{
m density}^{
m energy} =
ho_{
m radiation} +
ho_{
m matter}^{
m ordinary} +
ho_{
m matter}^{
m dark} +
ho_{
m \Lambda}$ $ho_{
m radiation} \propto 1/a^4(t) \propto T^4(t) \;, \quad
ho_{
m matter} \propto 1/a^3(t)$ $ho_{
m \Lambda} = {
m const}$

Why do we think it is most probably new particle physics (new gravity if any is not enough)?

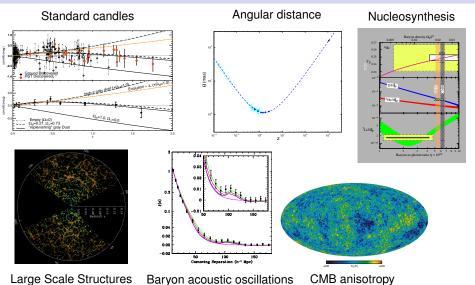
DM at various spatial scales, BAU requires baryon number violation

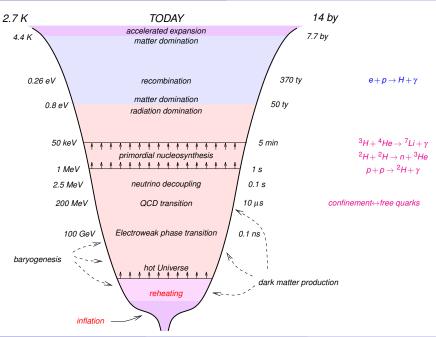
Universe content from astrophysics



29 October 2014

Universe content from cosmology





Friedmann equation for the present Universe

$$egin{align} \mathcal{H}^2 &\equiv \left(rac{\dot{a}}{a}
ight)^2 = rac{8\pi}{3}G(
ho_{ ext{M}} +
ho_{rad} +
ho_{\Lambda} +
ho_{ ext{curv}}) \ &rac{8\pi}{3}G
ho_{ ext{curv}} = -rac{arkappa}{a^2} \,, \quad
ho_c \equiv rac{3}{8\pi G}H_0^2 \ &
ho_c =
ho_{ ext{M},0} +
ho_{rad,0} +
ho_{\Lambda,0} =
ho_c = 0.53 \cdot 10^{-5}rac{ ext{GeV}}{ ext{cm}^3} \,, \ &\Omega_X \equiv rac{
ho_{X,0}}{
ho_c} \ & \end{array}$$

$$\left(rac{\dot{a}}{a}
ight)^2 = rac{8\pi}{3}G
ho_C\left[\Omega_{
m M}\left(rac{a_0}{a}
ight)^3 + \Omega_{
m rad}\left(rac{a_0}{a}
ight)^4 + \Omega_{
m \Lambda}
ight]$$

Outline

- General facts and key observables
- Evidences for Dark Matter in astrophysics and cosmology
- Mystery of Dark Energy
- Redshift and the Hubble law

$$ds^2 = g_{\mu\nu} dx^{\mu} dx^{\nu} = dt^2 - a^2(t) dl^2 = dt^2 - a^2(t) \gamma_{ij} dx^i dx^j$$

$$H(t) = \frac{a(t)}{a(t)}$$

Special frame: different parts look similar

Also this is comoving frame: world lines of particles at rest are geodesics,

$$\frac{du^{\mu}}{ds} + \Gamma^{\mu}_{\nu\lambda} u^{\nu} u^{\lambda} = 0$$

$$\gamma_{ij}pprox\delta_{ij}$$

Photons in the expanding Universe

$$S = -rac{1}{4}\int d^4x \sqrt{-g}g^{\mu
u}g^{\lambda
ho}F_{\mu\lambda}F_{
u
ho}$$

$$dt = ad\eta$$

conformally flat metric

$$\label{eq:ds2} \textit{ds}^2 = \textit{dt}^2 - \textit{a}^2(t) \delta_{ij} \textit{dx}^i \textit{dx}^j \ \longrightarrow \ \textit{ds}^2 = \textit{a}^2(\eta) [\textit{d}\eta^2 - \delta_{ij} \textit{dx}^i \textit{dx}^j]$$

$$S = -\frac{1}{4} \int d^4 x \, \eta^{\mu\nu} \eta^{\lambda\rho} F_{\mu\lambda} F_{\nu\rho} \,, \qquad \qquad A^{(\alpha)}_{\mu} = e^{(\alpha)}_{\mu} e^{ik\eta - i\mathbf{k}\mathbf{x}} \,, \quad k = |\mathbf{k}|$$
 $\Delta x = 2\pi/k \,, \quad \Delta \eta = 2\pi/k$

$$\lambda(t) = a(t)\Delta x = 2\pi \frac{a(t)}{k}$$
, $T = a(t)\Delta \eta = 2\pi \frac{a(t)}{k}$

Redshift and the Hubble law $\lambda_0 = \lambda_i \frac{a_0}{a(t_i)} \equiv \lambda_i (1 + z(t_i))$

$$\mathbf{p}(t) = \frac{\mathbf{k}}{\mathbf{a}(t)} \;, \;\; \omega(t) = \frac{k}{\mathbf{a}(t)}$$

for not very distant objects

1 pc \approx 3 ly

$$a(t_i) = a_0 - \dot{a}(t_0)(t_0 - t_i) \longrightarrow a(t_i) = a_0[1 - H_0(t_0 - t_i)]$$

$$z(t_i) = H_0(t_0 - t_i) = H_0 r$$
, $z \ll 1$
 $H_0 = h \cdot 100 \frac{\text{km}}{\text{s} \cdot \text{Mpc}}$, $h \approx 0.68$

similar reddening for other relativistic particles (small H, H, etc.)

$$p = \frac{k}{a(t)}$$

is true for massive particles as well

Gas of free particles in the expanding Universe

homogeneous gas in comoving coordinates:

$$dN = f(\mathbf{p}, t)d^3\mathbf{X}d^3\mathbf{p}$$

$$d^3$$
x = const, d^3 **k** = const, $f(k)$ = const
 $f(k)d^3$ **x** d^3 **k** = const

comoving volume equals physical volume

$$d^{3}\mathbf{x}d^{3}\mathbf{k} = d^{3}(a\mathbf{x})d^{3}\left(\frac{\mathbf{k}}{a}\right) = d^{3}\mathbf{X}d^{3}\mathbf{p}$$

$$f(\mathbf{p}, t) = f(\mathbf{k}) = f[a(t) \cdot \mathbf{p}].$$

$$t = t_{i} : f_{i}(\mathbf{p}) \longrightarrow f(\mathbf{p}, t) = f_{i}\left(\frac{a(t)}{a(t_{i})}\mathbf{p}\right)$$

Massless bosons (photons)

fermions

$$f_i(\mathbf{p}) = f_{\text{PI}}\left(\frac{|\mathbf{p}|}{T_i}\right) = \frac{1}{(2\pi)^3} \frac{1}{e^{|\mathbf{p}|/T_i} - 1}$$
$$f(\mathbf{p}, t) = f\left(\frac{a(t)|\mathbf{p}|}{a_i T_i}\right) = f\left(\frac{|\mathbf{p}|}{T_{\text{eff}}(t)}\right)$$

$$T_{eff}(t) = \frac{a_i}{a(t)}T_i$$

decoupling at $T \gg m$:

neutrinos, hot(warm) dark matter

decoupling at
$$T \ll m$$
: $f(\mathbf{p}) = \frac{1}{(2\pi)^3} \exp\left(-\frac{m-\mu_i}{T_i}\right) \exp\left(-\frac{a^2(t)\mathbf{p}^2}{2ma_i^2T_i}\right)$

$$f(\mathbf{p},t) = \frac{1}{(2\pi)^3} \exp\left(-\frac{m-\mu_{eff}}{T_{eff}}\right) \exp\left(-\frac{\mathbf{p}^2}{2mT_{eff}}\right)$$

$$T_{\text{eff}}(t) = \left(\frac{a_i}{a(t)}\right)^2 T_i, \qquad \frac{m - \mu_{\text{eff}}(t)}{T_{\text{off}}} = \frac{m - \mu_i}{T_i}$$

Dmitry Gorbunov (INR)