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What are the different states of matter?

What happens when hadronic matter is compressed or/and
heated?



QCD phase diagram

Our current picture of the phase diagram

• At zero chemical potential a smooth transition from hadronic
matter to quark-gluon plasma occurs



The effect of an external magnetic field
• How does the QCD phase diagram change with an

increasing magnetic field?

• Its effect is important in magnetars, heavy-ion collisions,...
• RHIC → eBmax ≈ 5m2

π ≈ 0.09 GeV2

• LHC → eBmax ≈ 15m2
π ≈ 0.27 GeV2



Phase transitions

Order parameters

• The quark condensate 〈q̄q〉 measures the chiral symmetry
breaking

• Exact order parameter for mq → 0

• The Polyakov loop Φ measures the center symmetry breaking

• Exact order parameter for mq → ∞

• Both symmetries are explicitly broken when the physical quark
masses values are used

• In this case we have approximate order parameters



Solving QCD on a Lattice (LQCD)
Wuppertal-Budapest Collaboration JHEP 1009 (2010) 073

• We are limited to zero chemical potential

• For Nf = 2 + 1 both transitions are crossovers
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LQCD in a presence of an external magnetic field
G.S. Bali, et al., JHEP 1202 (2012) 044

• At low temperatures ∆Σ is enhanced by the magnetic field
(Magnetic Catalysis)

• A non-monotonic behavior is obtained at temperatures near the
transition temperature

• Σi are suppressed by the magnetic field (Inverse Magnetic
Catalysis)



LQCD in a presence of an external magnetic field
G.S. Bali, et al., JHEP 1202 (2012) 044

• The pseudo-critical temperatures Tc(eB) are determined as the
inflection points of the susceptibilities



The impact of B on the nature of chiral transition
G.S. Bali, et al., JHEP 1202 (2012) 044

The transition remains an analytic crossover at least up to 1 GeV2



The effect of B on the Polyakov loop
F. Bruckmann, et al., JHEP 1304 (2013) 112

• It increases with B for a fixed temperature
• More pronounced near the transition temperature

• The inflection point moves towards lower temperatures with
increasing B



The Nambu−Jona-Lasinio (NJL) model

L = q̄ [iγµDµ − m̂f ] q + Gs

8
∑

a=0

[

(q̄λaq)2 + (q̄iγ5λaq)2
]

+ Ldet

• Local 4 quark point interaction

• The ’t Hooft six fermion term Ldet models the axial UA(1)
symmetry breaking

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]}

• Dynamic generation of quark masses

Mi = mi − 2Gs 〈q̄iqi〉 − 2K 〈q̄jqj〉 〈q̄kqk〉



Adding the Polyakov potential (PNJL model)
• There is no confinement mechanism in the NJL model

• The gluonic degrees of freedom are introduced by an effective
potential U(Φ, Φ̄, T )

Φ =
1

Nc

Trc

〈〈

Pexp

[

i

∫ β

0

dτA0(x , τ)

]〉〉

LPNJL = LNJL + U(Φ, Φ̄, T )

• The quarks interact with the gluon fiels through the minimal
coupling

Dµ = ∂µ − igAµ ; Aµ = δ
µ
0 A0 (Polyakov Gauge)



The Polyakov potential
S. Roessner, et al., PRD75 (2007) 034007

U(Φ, Φ̄; T) = T4

{

−
a(T)

2
Φ̄Φ + b(T) ln

[

1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2
]

}

a(T) = a0 + a1

(

T0

T

)

+ a2

(

T0

T

)2

, b(T) =

(

T0

T

)3

• Fitted to pure gluonic lattice results
• a0 = 3.51, a1 = −2.47, a2 = 15.2, b3 = −1.75

• Reproduce a first order phase transition at T0 = 270 MeV
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Adjusting the T0 of the Polyakov potential

• In the presence of dynamical quarks T0 must be adjusted

• A decrease of T0 from 270 to 210 MeV in the PNJL is needed

• TΦ
c = 171 MeV (crossover) is obtained
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Adding an external magnetic field to the model

• Static and constant magnetic field in the z direction

A
µ
EM = δµ2x1B

• Interaction with quarks via minimal coupling

D
µ
i = ∂

µ
i − iqiA

µ
EM

• The energy spectrum is modified by B = Bẑ

Ei →
√

(pi
z)

2 + 2|qi|Bn + M 2
i

where n = 0, 1, 2, ... is the Landau level.

• Dimensional reduction: D → D − 2 ⇒ px , py, pz → pz



Model vs LQCD results at zero temperature
MF, et al., PRD 89, 016002-10 (2014)

• In order to compare with LQCD results the condensates are
defined as

Σf (B, T) =
2mf

m2
π
f 2
π

[〈q̄f qf 〉 (B, T) − 〈q̄f qf 〉 (0, 0)] + 1

• and the condensates change due to B as

∆Σf (B, T) = Σf (B, T) − Σf (0, T)

• The condensate is enhanced
(Magnetic Catalysis)

• Even at eB = 1 GeV2 the
discrepancy is lower than 18%
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Model results: condensate at finite temperature
MF, et al., PRD 89, 016002-10 (2014)
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• The enhancement of the condensate (MC) occurs at any T

• There is no suppression of the condensates (IMC) near the
transition temperature as LQCD have shown

• The ∆Σf have a monotonic behavior with B for any T



Model results: critical temperatures
MF, et al., PRD 89, 016002-10 (2014)
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• Both critical temperatures increase with B

• LQCD shows the opposite: both decrease with B

• The deconfinement transition is less affected

• The difference between T u
c and T d

c is due to their electric charge



Strong coupling weakening
• In the lower p region relevant for the chiral symmetry breaking

dynamics the magnetic field screens the gluon interactions

• For sufficiently strong magnetic fields eB ≫ Λ2

QCD, the αs is in
leading-order a decreasing funtion of eB
[V. A. Miransky, et. al. PRD66,045006]

• Deconfinement and chiral restoration within the SU(3) PNJL and EPNJL models
in an external magnetic field, MF et al. Phys.Rev. D89 (2014) 016002

• Quark Antiscreening at Strong Magnetic Field and Inverse Magnetic Catalysis,
Ferrer, E.J. et al. arXiv:1407.3503

• The Importance of Asymptotic Freedom for the Pseudocritical Temperature in
Magnetized Quark Matter, Farias, R.L.S. et al. Phys. Rev. C 90, 025203 (2014)

• Inverse magnetic catalysis in the (2+1)-flavor NJL and PNJL models, MF et al.
Phys.Rev. D89 (2014) 116011

• Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic
effects on the coupling constant, Ayala, Alejandro et al. Phys.Rev. D90 (2014)
03600

• Anticatalysis in the linear sigma model with quarks, Ayala, Alejandro et al.
arXiv:1406.7408

• Finite temperature quark-gluon vertex with a magnetic field in the Hard Thermal
Loop approximation, Ayala, Alejandro et al. arXiv:1410.6388



Parametrization of Gs(eB)
MF, et al., PRD 89, 116011-9 (2014)

• There is a weakening of quark interactions

• In the NJL model Gs ∝ αs → Gs(eB)

• The Gs(eB) is obtained by fitting a generic function in order to
obtain the relative decrease of the critical temperature given by
LQCD results

• Gs(0) = G0
s and Gs(eB → ∞) → 0
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Average condensate with Gs(eB)
MF, et al., PRD 89, 116011-9 (2014)
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• Three qualitatively features in agreement with LQCD

• MC at lower temperatures
• IMC (non-monotonic behavior) at temperatures near the Tχ

c

• MC at higher temperatures (black line)



PNJL model with Gs(eB) vs LQCD results
MF, et al., PRD 89, 116011-9 (2014)
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• The Σu − Σd deviation might suggest a magnetic SU(3) flavor
breaking.



Deconfinement transition with Gs(eB)
MF, et al., PRD 89, 116011-9 (2014)
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• For a fixed temperature the Polyakov loop increases with B: the
deconfinement transition starts earlier

• This behavior is more pronounced in the transition temperature
region in agreement with LQCD results



Critical temperatures with Gs(eB)
MF, et al., PRD 89, 116011-9 (2014)
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• Both transition temperatures decrease with the magnetic field
strength



The Critical-End-Point (CEP)
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Conclusions

• The magnetic field weakens the interactions between quarks

• We have used a simple ansatz for the B dependence of Gs

• It was fitted in order to reproduce the critical temperature
decrease ratio with B

• In agreement with LQCD, the following features are reproduced:

• Inverse Magnetic Catalysis in the transition temperature region

• Magnetic Catalysis at low and at high temperatures

• Good qualitative agreement of (Σu + Σd)/2

• The Polyakov loop value has a pronounced rise with B in the
transition temperature region

• Both pseudo-critical temperatures are decreasing functions of B


