

•

FCTUC FACULDADE DE CIÊNCIAS E TECNOLOGIA UNIVERSIDADE DE COIMBRA

Inverse Magnetic Catalysis in (P)NJL models

Márcio Ferreira

Pedro Costa, Constança Providência

Centro de Física Computacional Department of Physics, University of Coimbra, Portugal

Débora P. Menezes (UFSC), **Tobias Frederico** (ITA) and **Odilon Lourenço** (UFSCAR)

New Trends in High Energy Physics and QCD October 21 - November 6, 2014

What are the different states of matter?

What happens when hadronic matter is compressed or/and heated?

QCD phase diagram

Our current picture of the phase diagram

• At zero chemical potential a smooth transition from hadronic matter to quark-gluon plasma occurs

The effect of an external magnetic field

• How does the QCD phase diagram change with an increasing magnetic field?

• Its effect is important in magnetars, heavy-ion collisions,...

• RHIC $\rightarrow eB_{max} \approx 5m_{\pi}^2 \approx 0.09 \,\mathrm{GeV}^2$

• LHC
$$\rightarrow eB_{max} \approx 15 m_{\pi}^2 \approx 0.27 \, \text{GeV}^2$$

Phase transitions

Order parameters

- The quark condensate $\langle \bar{q}q\rangle$ measures the chiral symmetry breaking
 - Exact order parameter for $m_q \rightarrow 0$
- The Polyakov loop Φ measures the center symmetry breaking
 - Exact order parameter for $m_q \to \infty$
- Both symmetries are explicitly broken when the physical quark masses values are used
 - In this case we have approximate order parameters

Solving QCD on a Lattice (LQCD) Wuppertal-Budapest Collaboration JHEP 1009 (2010) 073

- We are limited to zero chemical potential
- For $N_f = 2 + 1$ both transitions are crossovers

LQCD in a presence of an external magnetic field G.S. Bali, et al., JHEP 1202 (2012) 044

- At low temperatures $\Delta\Sigma$ is enhanced by the magnetic field (Magnetic Catalysis)
- A non-monotonic behavior is obtained at temperatures near the transition temperature
 - Σ_i are suppressed by the magnetic field (Inverse Magnetic Catalysis)

LQCD in a presence of an external magnetic field G.S. Bali, et al., JHEP 1202 (2012) 044

• The pseudo-critical temperatures $T_c(eB)$ are determined as the inflection points of the susceptibilities

The impact of B on the nature of chiral transition G.S. Bali, et al., JHEP 1202 (2012) 044

The transition remains an analytic crossover at least up to 1 GeV^2

The effect of B on the Polyakov loop

F. Bruckmann, et al., JHEP 1304 (2013) 112

- It increases with \boldsymbol{B} for a fixed temperature
 - More pronounced near the transition temperature
- The inflection point moves towards lower temperatures with increasing ${\cal B}$

The Nambu–Jona-Lasinio (NJL) model

$$\mathcal{L} = \bar{q} \left[i \gamma_{\mu} D^{\mu} - \hat{m}_{f} \right] q + G_{s} \sum_{a=0}^{8} \left[(\bar{q} \lambda_{a} q)^{2} + (\bar{q} i \gamma_{5} \lambda_{a} q)^{2} \right] + \mathcal{L}_{det}$$

- Local 4 quark point interaction
- The 't Hooft six fermion term \mathcal{L}_{det} models the axial $U_A(1)$ symmetry breaking

$$\mathcal{L}_{det} = -K \left\{ \det \left[\bar{q}(1+\gamma_5)q \right] + \det \left[\bar{q}(1-\gamma_5)q \right] \right\}$$

• Dynamic generation of quark masses

$$M_{i} = m_{i} - 2G_{s} \left\langle \bar{q}_{i} q_{i} \right\rangle - 2K \left\langle \bar{q}_{j} q_{j} \right\rangle \left\langle \bar{q}_{k} q_{k} \right\rangle$$

Adding the Polyakov potential (PNJL model)

- There is no confinement mechanism in the NJL model
- The gluonic degrees of freedom are introduced by an effective potential $\mathcal{U}(\Phi,\bar{\Phi},T)$

$$\Phi = \frac{1}{N_c} \operatorname{Tr}_c \left\langle \left\langle \mathcal{P}exp\left[i \int_0^\beta d\tau A_0(x,\tau)\right] \right\rangle \right\rangle$$

$$\mathcal{L}_{PNJL} = \mathcal{L}_{NJL} + \mathcal{U}(\Phi, \bar{\Phi}, T)$$

• The quarks interact with the gluon fiels through the minimal coupling

$$D^{\mu} = \partial^{\mu} - igA^{\mu}$$
; $A^{\mu} = \delta^{\mu}_{0}A^{0}$ (Polyakov Gauge)

The Polyakov potential

S. Roessner, et al., PRD75 (2007) 034007

$$\mathcal{U}(\Phi,\bar{\Phi};T) = T^4 \left\{ -\frac{a(T)}{2}\bar{\Phi}\Phi + b(T)\ln\left[1 - 6\bar{\Phi}\Phi + 4(\bar{\Phi}^3 + \Phi^3) - 3(\bar{\Phi}\Phi)^2\right] \right\}$$

$$a(T) = a_0 + a_1 \left(\frac{T_0}{T}\right) + a_2 \left(\frac{T_0}{T}\right)^2 , \ b(T) = \left(\frac{T_0}{T}\right)^3$$

• Fitted to pure gluonic lattice results

•
$$a_0 = 3.51$$
, $a_1 = -2.47$, $a_2 = 15.2$, $b_3 = -1.75$

• Reproduce a first order phase transition at $T_0 = 270 \text{ MeV}$

Adjusting the T_0 of the Polyakov potential

- In the presence of dynamical quarks T_0 must be adjusted
- A decrease of $\,T_0$ from 270 to 210 MeV in the PNJL is needed
 - $T_c^{\Phi} = 171 \text{ MeV} (crossover)$ is obtained

 $T_c^{\Phi} \approx 175 \,\mathrm{MeV} \,(\mathsf{LQCD}) \,(crossover)$

Adding an external magnetic field to the model

• Static and constant magnetic field in the z direction

$$A^{\mu}_{EM} = \delta^{\mu 2} x_1 B$$

• Interaction with quarks via minimal coupling

$$D_i^{\mu} = \partial_i^{\mu} - iq_i A_{EM}^{\mu}$$

• The energy spectrum is modified by ${\bf B}=B\hat{z}$

$$E_i \to \sqrt{(p_z^i)^2 + 2|q_i|B\mathbf{n} + M_i^2}$$

where n = 0, 1, 2, ... is the Landau level.

• Dimensional reduction: $D \rightarrow D - 2 \Rightarrow p_x, p_y, p_z \rightarrow p_z$

Model vs LQCD results at zero temperature MF, et al., PRD 89, 016002-10 (2014)

• In order to compare with LQCD results the condensates are defined as

$$\Sigma_f(B, T) = \frac{2m_f}{m_\pi^2 f_\pi^2} \left[\left\langle \bar{q}_f q_f \right\rangle(B, T) - \left\langle \bar{q}_f q_f \right\rangle(0, 0) \right] + 1$$

 $\bullet\,$ and the condensates change due to B as

$$\Delta \Sigma_f(B, T) = \Sigma_f(B, T) - \Sigma_f(0, T)$$

- The condensate is enhanced (Magnetic Catalysis)
- Even at $eB = 1 \text{ GeV}^2$ the discrepancy is lower than 18%

Model results: condensate at finite temperature MF, et al., PRD 89, 016002-10 (2014)

- The enhancement of the condensate (MC) occurs at any T
- There is no suppression of the condensates (IMC) near the transition temperature as LQCD have shown
 - The $\Delta \Sigma_f$ have a monotonic behavior with B for any T

Model results: critical temperatures

MF, et al., PRD 89, 016002-10 (2014)

- Both critical temperatures increase with B
 - LQCD shows the opposite: both decrease with B
- The deconfinement transition is less affected
- The difference between T_c^u and T_c^d is due to their electric charge

Strong coupling weakening

- In the lower p region relevant for the chiral symmetry breaking dynamics the magnetic field screens the gluon interactions
- For sufficiently strong magnetic fields eB ≫ Λ²_{QCD}, the α_s is in leading-order a decreasing function of eB
 [V. A. Miransky, et. al. PRD66,045006]
 - Deconfinement and chiral restoration within the SU(3) PNJL and EPNJL models in an external magnetic field, MF et al. Phys.Rev. D89 (2014) 016002
 - Quark Antiscreening at Strong Magnetic Field and Inverse Magnetic Catalysis, Ferrer, E.J. et al. arXiv:1407.3503
 - The Importance of Asymptotic Freedom for the Pseudocritical Temperature in Magnetized Quark Matter, Farias, R.L.S. et al. Phys. Rev. C 90, 025203 (2014)
 - Inverse magnetic catalysis in the (2+1)-flavor NJL and PNJL models, MF et al. Phys.Rev. D89 (2014) 116011
 - Inverse magnetic catalysis for the chiral transition induced by thermo-magnetic effects on the coupling constant, Ayala, Alejandro et al. Phys.Rev. D90 (2014) 03600
 - Anticatalysis in the linear sigma model with quarks, Ayala, Alejandro et al. arXiv:1406.7408
 - Finite temperature quark-gluon vertex with a magnetic field in the Hard Thermal Loop approximation, Ayala, Alejandro et al. arXiv:1410.6388

Parametrization of $G_s(eB)$

MF, et al., PRD 89, 116011-9 (2014)

- There is a weakening of quark interactions
- In the NJL model $G_s \propto lpha_s \ o \ G_s(eB)$
- The $G_s(eB)$ is obtained by fitting a generic function in order to obtain the relative decrease of the critical temperature given by LQCD results

•
$$G_s(0) = G_s^0$$
 and $G_s(eB \to \infty) \to 0$

Average condensate with $G_s(eB)$ MF, et al., PRD 89, 116011-9 (2014)

Three qualitatively features in agreement with LQCD

- MC at lower temperatures
- IMC (non-monotonic behavior) at temperatures near the T_c^{χ}
- MC at higher temperatures (black line)

PNJL model with $G_s(eB)$ vs LQCD results MF, et al., PRD 89, 116011-9 (2014)

 The Σ_u - Σ_d deviation might suggest a magnetic SU(3) flavor breaking.

Deconfinement transition with $G_s(eB)$ MF, et al., PRD 89, 116011-9 (2014)

- For a fixed temperature the Polyakov loop increases with *B*: the deconfinement transition starts earlier
- This behavior is more pronounced in the transition temperature region in agreement with LQCD results

Critical temperatures with $G_s(eB)$ MF, et al., PRD 89, 116011-9 (2014)

 Both transition temperatures decrease with the magnetic field strength

The Critical-End-Point (CEP)

Conclusions

- The magnetic field weakens the interactions between quarks
- We have used a simple ansatz for the B dependence of G_s
- It was fitted in order to reproduce the critical temperature decrease ratio with ${\cal B}$
- In agreement with LQCD, the following features are reproduced:
 - Inverse Magnetic Catalysis in the transition temperature region
 - Magnetic Catalysis at low and at high temperatures
 - Good qualitative agreement of $(\Sigma_u + \Sigma_d)/2$
 - The Polyakov loop value has a pronounced rise with *B* in the transition temperature region
 - Both pseudo-critical temperatures are decreasing functions of ${\boldsymbol B}$