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Point-like nucleus (Coulomb field)

For an electron, Coulomb field of a nucleus Ze can be considered
as external since mp/me ∼ 2000. E.g., for the uranium
E = 900Ec, at R = 1, 2A1/3 fm.
Usually, electron spectrum in Coulomb f. is identified with the
Dirac operator spectrum,

Ĥ (Z ) = −i h̄cα∇+ βmc2 − Ze
2

r
,

which was given by Sommerfeld (1940). Here there exists so-called
"Zc = α−1 ' 137, 04 catastrophe"! If Za > j + 1/2, the
spectrum becomes imaginary. E.g., for the lowest level

E = mc2
√
1− (Za)2.

Gordon (1928): "no regular solutions for ground state are
found beyond Zc." This is repeated in all articles and books,
Akhiezer, Berestetskǐi, 1969; Greiner, Müller, Rafelski, 1985. The
reason: point-like nucleus in calculating the spectrum.
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Nucleus of a finite radius

A nucleus of a finite size, cutoff at R ∼ 1, 2× 10−12cm, the Dirac
equation has physically reasonable solutions for Z < 173. But for
Z ≥ 173 another diffi culty arises (Popov 1970,1971)

They believed that the problem can no longer be considered
a one-particle one. There exists spontaneous pair production
and screening of the Coulomb potential becomes essential.
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Returning again to Coulomb field of point-like nucleus

Not disputing the fact that taking account of a finite size of
the nucleus corresponds to a more realistic setting up the
problem, we do not agree with the assertion that the Dirac
Hamiltonian with the Coulomb field of overcritical point-like
nucleus is inconsistent! The diffi culties with the spectrum for
Z > Zc do not arise if the Dirac Hamiltonian is correctly
defined as a self-adjoint (s.a.) operator!
A rigorous treatment of this problem based on von Neumann
theory of s.a. extensions of symmetric operators and Krein method
of guiding functionals is presented in:
Gitman, Tyutin, Voronov, Theor.Math.Phys. 150 (2007) 34;
Self-adjoint Extensions in Quantum Mechanics (Birkhäuser
2012)
It was demonstrated that a definition of the Dirac
Hamiltonian as a s.a. operator presents no problem for
arbitrary Z .
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Adjoint, self-adjoint, and symmetric operators

Consider a linear operator f̂ and a linear equation for pairs of
vectors ξ∗, η∗: (

ξ∗, f̂ ξ
)
= (η∗, ξ) , ∀ξ ∈ Df , (1)

(defining equation for adjoint operator f̂ +). ! η∗ is uniquely

determined by ξ∗: ξ∗
f̂ +−→ η∗, or η∗ = f̂

+ξ∗. Then f̂ has the
adjoint operator f̂ +, its domain Df + ∈ L2(R) consists of such ξ∗
for which there exist vectors η∗ satisfying eq.(1).
f̂ + has to be calculated!
Self-adjoint f̂ : f̂ + = f̂ , in particular, Df + = Df .
Compare: f̂ is called symmetric operator, or Hermitian
operator!, if (

η, f̂ ξ
)
=
(
f̂ η, ξ

)
, ∀ξ , η ∈ Df .

In the general case: symmetric operator is not self-adjoint, but
self-adjoint is always symmetric.



Electronic Structure of Super Heavy Atoms Appendix

S.a. Dirac Hamiltonians with the Coulomb field

A specific feature of the overcritical charges is a nonuniqueness of
s.a. Dirac Hamiltonian, but this nonuniqueness is characteristic
even for

Z > Zs =
(√

3/2
)

α−1 ' 118, 68.

One can see that a s.a. Dirac Hamiltonian Ĥ (Z ) with Z ≤ Zs is
defined uniquely. For each Z ≥ Zs, there exist a family
{Ĥν1,...,ν∆ (Z )} of s.a. Hamiltonians parametrized by a finite
number of parameters

νi ∈ [− π/2, π/2], −π/2 ∼ π/2, i = 1, ..., ∆ = 2k(Z ),
k(Z ) = (1/4+ Z 2α2)1/2 − δ, 0 < δ ≤ 1.

Any specific s.a. Dirac Hamiltonian Ĥν1,...,ν∆ (Z ) corresponds to a
certain prescription for a behavior of an electron at the origin and
specified by some boundary conditions for the wave function at the
origin. A real spectrum and a complete set of eigenstates can be
evaluated for each Ĥν1,...,ν∆ (Z ) with arbitrary Z .
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S.a. Dirac Hamiltonians with Coulomb field

Dirac Hamiltonian Ĥ (Z ) is a s.a. operator in the Hilbert space of
s.-integrable bispinors Ψ (r) . On its domain Ĥ (Z ) acts by the
differential operation

Ȟ (Z ) = γ0 (γp̌+m)− qr−1, p̌ = −i∇, r = |r| , q = Zα.

Three commuting s.a. operators Ĵ
2
, Ĵz , K̂ , where Ĵ total angular

momentum, and K̂ a spin operator (all commute with Ĥ (Z )),

Ĵ = L̂+ Σ/2, L̂ = [r× p̂] , K̂ = γ0
[
1+

(
ΣL̂
)]

.

Any Ψ (r) can be represented as Ψ(r) = ∑j ,M ,ζ Ψj ,M ,ζ (r),

Ψj ,M ,ζ (r) =
1
r

(
Ωj ,M ,ζ(θ, ϕ)f (r)
iΩj ,M ,−ζ(θ, ϕ)g (r)

)
,

Ωj ,M ,ζ spherical spinors, f (r), g (r)-radial functions,

Ĵ
2
Ψ = j(j + 1)Ψ, ĴzΨ = MΨ, K̂Ψ = −ζ(j + 1/2)Ψ,

j = 1/2, 3/2, ...; M = −j ,−j + 1, ..., j ; ζ = ±1.
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S.a. radial Hamiltonians with Coulomb field

Ĥ (Z )Ψ (r) = EΨ (r)→ ĥ (Z , j , ζ) F (r) = EF (r) ,

F = (f (r)�g (r)) ∈ L2(R+)⊕ L2(R+),

where ĥ (Z , j , ζ)−some s.a. radial Hamiltonians acting as
ȟ (Z , j , ζ) = −iσ2dr + ζ(j + 1/2)r−1σ1 − qr−1 +mσ3 .

Von Neumann theory of s.a. extensions of symmetric operators:

ȟ (Z , j , ζ)→ ĥ (Z , j , ζ)− all s.a. radial Hamiltonians with Dĥ(Z ,j ,ζ)

Initial symmetric operators ĥin (Z , j , ζ),
Dĥin(Z ,j ,ζ) = D(R+)⊕D(R+), where D(R+)−space of smooth
functions f (r) with a compact support. Then

Dĥin(Z ,j ,ζ) ⊆ Dĥ(Z ,j ,ζ) ⊆ Dĥ+in(Z ,j ,ζ) = D
∗
ȟ(Z ,j ,ζ),

D∗
ȟ(Z ,j ,ζ)

natural domains: F , ȟ (Z , j , ζ) F ∈ L2(R+). Domains

D∗
ȟ(Z ,j ,ζ)

and their restrictions Dĥ(Z ,j ,ζ) can be calculated.
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S.a. radial Hamiltonians with Coulomb field

Constructing s.a. radial Hamiltonians ĥ (Z , j , ζ) essentially
depends on Z and j.
There are two regions, nonsingular and singular ones, where the
problem of s.a. extensions has principally different solutions. These
regions are separated by the singular curve Z = Zs (j),
Zs (j) =

√
j (j + 1)α−1 = 118, 7; 265; 405; 544; ... .
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Nonsingular region

For Z ≤ Zs (j) deficiency indices of each operator ĥin (Z , j , ζ) are
zero and ĥ (Z , j , ζ) = ĥ+in (Z , j , ζ) is a unique s.a. extension of
ĥin (Z , j , ζ) with Dĥ(Z ,j ,ζ) = D

∗
ȟ(Z ,j ,ζ)

(R+). Functions belonging

to D∗
ȟ(Z ,j ,ζ)

(R+) have the following asymptotic behavior

F (r) = O(r1/2), r → 0; F (r)→ 0, r → ∞.

A discrete spectrum {Enζ
(Z , j , ζ)} of each ĥ (Z , j , ζ) has the form

Enζ
(Z , j , ζ) =

m
(
nζ + γ

)√
q2 + (nζ + γ)2

, γ =
√
(j + 1/2)2 − q2,

n1 = 1, 2, ...; n−1 = 0, 1, 2, ...; q = Zα,

well-known Sommerfeld spectrum in the nonsingular region. This
result justifies the standard formal treatment of the Dirac
Hamiltonian with Z in the nonsingular region in the physical
literature where the Hamiltonian is identified with the differential
operation Ȟ (Z ) and the natural domain is implicitly assumed.
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Singular region
General

In singular regions, Z > Zs (j), the deficiency indices of the
operator ĥin (Z , j , ζ) are (1, 1), there exists a family {ĥν (Z , j , ζ)}
of its s.a. extensions, ν ∈ [− π/2, π/2], −π/2 ∼ π/2.
At the same time, each ĥν (Z , j , ζ) is a nontrivial restriction of
ĥ+in (Z , j , ζ), such that Dĥν(Z ,j ,ζ) ⊂ D∗ȟ(q,κ) (R+).
Technically, it is convenient to divide the singular region into three
subregions, we call them subcritical, critical, and overcritical
regions.
The subregions are distinguished by a character of asymptotic
boundary conditions at the origin specifying the domains Dĥν(Z ,j ,ζ).
The boundary conditions are similar in each subregion, which
provides similar solutions of the corresponding spectral problems.
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Subcritical region

√
j (j + 1)α−1 = Zs (j) < Z ≤ Zc (j)− critical curve

Zc (j) = (j + 1/2) α−1 = 137; 274; 411; 548; ... .

S.a. Hamiltonians ĥν (Z , j , ζ) are specified by boundary conditions

F (r) = c [(mr)γd+ cos ν+ (mr)−γd− sin ν] +O(r1/2), r → 0,

where 0 < γ =
√
(j + 1/2)2 − q2 < 1/2, and d± some constant

doublets.
The discrete spectrum consists of the points {E (ν)nζ (Z , j , ζ)} that
obey the equation

Γ(1+ 2γ)Γ(−γ− qEτ−1)[q(m− E )− (κ + γ)τ]

Γ(γ− qE/τ)[q(m− E )− (κ − γ)τ](2τ/m)2γ
= 0,

where κ = ζ(j + 1/2), q = Zα, and τ =
√
m2 − E 2.
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Subcritical region

Figure: ν-dependence of energy levels E (ν)nζ
(121, 1/2, ζ = ±1) and

Z -dependence of ν−m , j = 1/2.

The position of the discrete energy levels E (ν)nζ (Z , j , ζ) essentially
depends on ν, in particular, there exists a value ν = ν−m , for
which the lower energy level coincides with the boundary E = −m
of the lower continuous spectrum.
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Subcritical region

E (0)nζ (Z , j , ζ) is the Sommerfeld spectrum. For ν = ±π/2, we have

E (±π/2)
nζ (Z , j , ζ) =

(nζ − γ)m√
q2 + (nζ − γ)2

.
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Critical region

The critical region is the critical curve Z = Zc (j). For integer Z ,
this region does not exist if the finite structure constant α is an
irrational number, in particular, this region certainly is absent for
j = 1/2.
S.a. radial Hamiltonians ĥν (Z , j , ζ) are specified by boundary
conditions

F (r) = c [d0(r) cos ν+ d+ sin ν] +O(r1/2 ln r), r → 0,

where d0(r) are some doublet with the asymptotic behavior
d0(r) = O (lnmr) as r → 0.
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Overcritical region

The overcritical region Z > Zc (j).
S.a. radial Hamiltonians ĥν (Z , j , ζ) are specified by boundary
conditions

F (r) = c
[
eiν(mr)iσρ+ + e−iν(mr)−iσρ−

]
+O(r1/2), r → 0,

q = Zα, σ =
√
q2 − (j + 1/2)2 > 0, and ρ± some constant

doublets.
The discrete spectrum consists of the points {E (ν)nζ (Z , j , ζ)} that
obey the equation

cos

[
1
2i

3

∑
a=1
[ln (Ba)− ln (B∗a )] + σ ln

2τ

m
− ν

]
= 0,

B1 = −2iσ, B2 (E ) = iσ− Eqτ−1, B3 (E ) =
τ(j + 1/2− iζσ)− ζq(m− E ).
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Overcritical region

Figure: ν-dependence of energy levels E (ν)nζ
(138, 1/2, ζ = ±1) and

Z -dependence of ν−m , j = 1/2.
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Figure: ν-dependence of energy levels E (ν)nζ
(180, 1/2, ζ = ±1).
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Concluding remarks
General

For any Z , the Dirac Hamiltonian Ĥ (Z ) can be defined as a
self-adjoint operator.

For Z ≤ 118 the Dirac Hamiltonian Ĥ (Z ) is defined uniquely.
For Z ≥ 119, there exist family {Ĥν1,...,ν∆ (Z )} of possible
total s.a. Dirac Hamiltonians. The family is parametrized by
the parameters νi ∈ [− π/2, π/2], −π/2 ∼ π/2,
i = 1, ..., ∆.
For any Z and any Ĥν1,...,ν∆ (Z ) spectra and inversion
formulas are found. Eigenfunctions of the discrete spectrum
and generalized eigenfunctions of the continuous spectrum
form a complete orthonormalized system in L2(R+).
The spectra of any s.a. Dirac Hamiltonian are simple
(nondegenerate) and contain a continuous part occupying the
two semiaxis E ≤ −m and E ≥ m and a discrete part
{Enζ

(Z , j , ζ)} located in the interval |E | ≤ m.
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total s.a. Dirac Hamiltonians. The family is parametrized by
the parameters νi ∈ [− π/2, π/2], −π/2 ∼ π/2,
i = 1, ..., ∆.
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Concluding remarks

The discrete spectrum is always accumulated at E = m, and
asymptotic form of the difference Enζ

(Z , j , ζ)−m as
nζ = n→ ∞ is given by the well-known non-relativistic

formula Enonrel
n = −mq2

(
2n2
)−1.

The position of discrete energy levels E (ν)nζ (Z , j , ζ) essentially
depends on ν, in particular, for any Z ≥ 119 there exists a
value ν = ν−m , for which the lower energy level coincides with
the boundary E = −m of the lower continuous
spectrum, E (ν−m )0 (Z , j , ζ) = −m. But

−m < E (ν)nζ (Z , j , ζ) < m, ∀n ≥ 0, ∀ν 6= ν−m .

Generalizig Zeldovich-Popov interpretation for point-like
nucleus: particle creation could start for Z ≥ 119.

Interesting coincidence: only nuclei with Z ≤ 118 have been
synthesised until now.



Electronic Structure of Super Heavy Atoms Appendix

Concluding remarks

The discrete spectrum is always accumulated at E = m, and
asymptotic form of the difference Enζ

(Z , j , ζ)−m as
nζ = n→ ∞ is given by the well-known non-relativistic

formula Enonrel
n = −mq2

(
2n2
)−1.

The position of discrete energy levels E (ν)nζ (Z , j , ζ) essentially
depends on ν, in particular, for any Z ≥ 119 there exists a
value ν = ν−m , for which the lower energy level coincides with
the boundary E = −m of the lower continuous
spectrum, E (ν−m )0 (Z , j , ζ) = −m. But

−m < E (ν)nζ (Z , j , ζ) < m, ∀n ≥ 0, ∀ν 6= ν−m .

Generalizig Zeldovich-Popov interpretation for point-like
nucleus: particle creation could start for Z ≥ 119.

Interesting coincidence: only nuclei with Z ≤ 118 have been
synthesised until now.



Electronic Structure of Super Heavy Atoms Appendix

Concluding remarks

The discrete spectrum is always accumulated at E = m, and
asymptotic form of the difference Enζ

(Z , j , ζ)−m as
nζ = n→ ∞ is given by the well-known non-relativistic

formula Enonrel
n = −mq2

(
2n2
)−1.

The position of discrete energy levels E (ν)nζ (Z , j , ζ) essentially
depends on ν, in particular, for any Z ≥ 119 there exists a
value ν = ν−m , for which the lower energy level coincides with
the boundary E = −m of the lower continuous
spectrum, E (ν−m )0 (Z , j , ζ) = −m. But

−m < E (ν)nζ (Z , j , ζ) < m, ∀n ≥ 0, ∀ν 6= ν−m .

Generalizig Zeldovich-Popov interpretation for point-like
nucleus: particle creation could start for Z ≥ 119.

Interesting coincidence: only nuclei with Z ≤ 118 have been
synthesised until now.



Electronic Structure of Super Heavy Atoms Appendix

Concluding remarks

The discrete spectrum is always accumulated at E = m, and
asymptotic form of the difference Enζ

(Z , j , ζ)−m as
nζ = n→ ∞ is given by the well-known non-relativistic

formula Enonrel
n = −mq2

(
2n2
)−1.

The position of discrete energy levels E (ν)nζ (Z , j , ζ) essentially
depends on ν, in particular, for any Z ≥ 119 there exists a
value ν = ν−m , for which the lower energy level coincides with
the boundary E = −m of the lower continuous
spectrum, E (ν−m )0 (Z , j , ζ) = −m. But

−m < E (ν)nζ (Z , j , ζ) < m, ∀n ≥ 0, ∀ν 6= ν−m .

Generalizig Zeldovich-Popov interpretation for point-like
nucleus: particle creation could start for Z ≥ 119.

Interesting coincidence: only nuclei with Z ≤ 118 have been
synthesised until now.



Electronic Structure of Super Heavy Atoms Appendix

The end
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Operators in Hilbert space. Adjoint operator

Hilbert space H = L2 (a, b) . A linear operator f̂ with a domain
Df ⊆ H is a linear mapping Df −→ H. In general, Df is not a
closed subspace, Df 6= Df ; it is typical for unbounded operators,
and is a specific feature of an infinite-dim. H . f̂ is called densely
defined operator (DDO), if Df = H, it is typical for QM
observables.
There is a stable distinction between the physical and
mathematical terminologies at this point.
Let p̂ = −i h̄dx in L2(R) (momentum operator for a one-dim.
particle). In physical textbooks, ψp(x) = exp(ipx/ h̄) satisfying
the differential equation −i h̄ψ′p(x) = pψp(x) is called the
eigenfunction of p̂ corresponding to the eigenvalue p.
But ψp(x) /∈ L2(R), it is not s.-integrable on R. Therefore,

ψp(x) is not an eigenfunction of p̂, and p is not its eigenvalue; this
function is the so-called generalized eigenfunction of p̂, however, p
is a point of the spectrum of p̂ from the standpoint of a strict
math. definition.
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Adjoint, self-adjoint, and symmetric operators

Consider DDO f̂ and a linear equation for pairs of vectors ξ∗, η∗:(
ξ∗, f̂ ξ

)
= (η∗, ξ) , ∀ξ ∈ Df , (2)

(defining equation for adjoint operator f̂ +). ! η∗ is uniquely

determined by ξ∗: ξ∗
f̂ +−→ η∗, or η∗ = f̂

+ξ∗. Then f̂ has the
adjoint operator f̂ +, its domain Df + ∈ L2(R) consists of such ξ∗
for which there exist vectors η∗ satisfying eq.(2).
Self-adjoint DDO f̂ : f̂ + = f̂ , in particular, Df + = Df .
Compare: A DDO f̂ is called symmetric operator, or
Hermitian operator!, if f̂ + is an extension of f̂ , f̂ ⊆ f̂ + , i.e.,(

η, f̂ ξ
)
=
(
f̂ η, ξ

)
, ∀ξ , η ∈ Df .

In the general case: symmetric operator is not self-adjoint, but
self-adjoint is always symmetric.
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In some textbooks on QM for physicists, this definition is
considered the definition of a s.a. operator. This implicitly means
that only bounded operators defined everywhere are considered.
For unbounded operators, symmetricity and self-adjointness are
different notions: self-adjointness implies symmetricity, but not
vice versa. Symmetricity is generally insuffi cient for QM
observables, they must be s.a..
If a symmetric operator f̂ allows a symmetric extension ĝ , f̂ ⊆ ĝ ,
with ĝ ⊆ ĝ+, then the chain of inclusions
We consider a very simple quantum-mechanical (QM) system: a
free one-dimensional particle on an interval (a, b) and we shall see
that by following the naive (extracted from simple textbooks on
QM) precriptions literally, we arrive at certain paradoxes.
The phase space of this system is a strip, (a, b)×R, the position
x ∈ (a, b) and the momentum p ∈ R. The evolution is defined by
the Hamilton H = p2/2m. If |a| < ∞ and/or |b| < ∞, the
peculiarity of this system is that its phase space is a space with
boundaries.
The QM particle is assigned the position operator x̂ and the
momentum operator p̂, with the canonical commutation relations

[x̂ , x̂ ] = [p̂, p̂] = 0, [x̂ , p̂] = i h̄{x , p} = i h̄ . (3)
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It is natural to take the x-representation of the commutation
relations preserving the spectrum of x̂ in the form
specx̂ = {x ∈ (a, b)}, and, correspondingly, to realize the Hilbert
space H = L2(a, b) of functions on (a, b), being square-integrable
on this interval. Then x̂ is the operator of multiplication by x :

x̂ψ (x) = xψ (x) , (4)

while p̂ is:
p̂ = −i h̄dx : p̂ψ (x) = −i h̄ψ′ (x) . (5)

The quantum Hamiltonian is:

Ĥ = p̂2

2m
= − h̄

2

2m
d2x . (6)

The position operator x̂ seams to be a bounded, self-adjoint
operator, x̂ = x̂+. Considering p̂ as a self-adjoint operator, we
have a set of three a self-adjoint operators x̂ , p̂, and Ĥ with the
commutation relations

[x̂ , p̂] = i h̄ ,
[
p̂ , Ĥ

]
= 0 , (7)

In case all the previous statements are valid, the following
observations seem paradoxical:
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Let ψp (x) be an eigenvector of the momentum operator,
p̂ψp = pψp . Then(

ψp , [x̂ , p̂]ψp
)
=
(

ψp , x̂ p̂ψp

)
−
(

ψp , p̂x̂ψp

)
=
(

ψp , x̂ p̂ψp

)
−
(
p̂ψp , x̂ψp

)
= p[

(
ψp , x̂ψp

)
−
(
x̂ψp , ψp

)
] = 0, (8)

which is based on the self-adjointness of p̂. It is clear that the
result (8) is in contradiction with a nonzero value of the
commutator [x̂ , p̂] = i h̄.
In addition, the latter commutator implies the Heisenberg
uncertainty relation

∆x∆p ≥ h̄
2

, (9)

where ∆x and ∆p are the respective dispersions of the position and
momentum. We recall that

∆f =
√
〈
(
f̂ − 〈f̂ 〉ψ

)2〉ψ = √〈f̂ 2〉ψ − 〈f̂ 〉2ψ . (10)

However, in the case of a finite interval, say (0, l), and for ψ = ψp ,
we have ∆x ≤ l and ∆p = 0, so that ∆x∆p = 0, which is in
contradiction with (9).
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Let us consider a particle in an infinite rectangular potential well
(on the interval [0, l ]). The eigenvalues and the eigenfunctions of
the Hamiltonian in the case under consideration are well-known
from any textbook:

Ĥψn (x) = Enψn (x) , En =
h̄2

2m

(π

l

)2
n2 , (11)

ψn (x) =

√
2
l
sin
(πn
l
x
)

, n = 1 , 2 , . . . . (12)

It is also well-known that the sequence ψn (x) of these
eigenfunctions is an orthobasis in L2 (0, l), which confirms the
self-adjointness of the Hamiltonian. It is know that any two
commuting s.a. operators have common eigenvectors. In
particular, if the spectrum of one of the commuting s.a. operators
is nondegenerate then its eigenvectors must be eigenvectors of
another s.a. operator. Here, we have two s.a. operators p̂ and Ĥ
commuting among themselves; moreover, the spectrum (11) of Ĥ
is nondegenerate. Therefore, eigenfunctions (12) must be the
eigenfunctions of p̂; however,

p̂ψn (x) = −i h̄
√
2
l

πn
l
cos

πn
l
x 6= pnψn (x) ,

for any pn, in contradiction with what one should expect in the
case under consideration.
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In standard text-books on QM for physicists, it is believed that the
matrix fmn =

(
em , f̂ en

)
of an operator f̂ with respect to an

orthobasis en completely defines the operator f̂ by means of

ψ =
∞

∑
n=1

ψnen , ψn = (en, ψ) ,

f̂ en =
∞

∑
m=1

fmnem ,

f̂ ψ =
∞

∑
m=1

(
∞

∑
n=1

fmnψn

)
em .

For example, the adjoint f̂ + of f̂ is defined as an operator whose
matrix elements are(

f +
)
mn =

(
em ,f̂ +en

)
=
(
f̂ em , en

)
= fnm .

Correspondingly, a self-adjoint operator, f̂ = f̂ + , is defined as an
operator whose matrix is Hermitian fmn = fnm .
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However, let us consider the set

en(x) =

√
2
l
cos
(πn
l
x
)

, n ∈ Z, (13)

which is complete in L2(0, l). Calculating the matrix elements
pmn = (em , p̂en) of the momentum operator p̂ with respect to this
set, we obtain

pnm = pmn + i [em(l)en(l)− em(0)en(0)]
6= pmn , (14)

so that the matrix pmn is not Hermitian, contrary to our
expectations.
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Let us consider a state of a free particle in an infinite rectangular
potential well (on a segment [0, l ] with the wave function

ψ (x) = Nx (x − l) , (15)

and let us then calculate the mean value of the squared energy
〈E 2〉 for such a state. On the one hand, due to the property(
Ĥ
)2

ψ = 0, this mean value must be zero:

〈E 2〉 =
(

ψ,
(
Ĥ
)2

ψ

)
= 0.

On the other hand, due to the self-adjoitness of Ĥ, we obtain a
nonzero result for the same quantity:

〈E 2〉 =
(
Ĥψ, Ĥψ

)
=
N2 h̄4l
m2

.
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Consider the Schrödinger equation

i h̄
∂ψ (x , t)

∂t
= Ĥψ (x , t) (16)

for a particle in an infinite rectangular potential well (on the
segment [0, l ]).
We recall that in the idealized quantization scheme the
time-evolution problem in the form (16) can be posed for arbitrary
initial states. Let us examine an initial (at t = 0) state

ψ (x) = C exp
(
i + 1√
2

kx
h̄

)
, (17)

where k is a certain fixed real parameter. The case of the initial
state (17) is quite surprising, because it is easy to verify that the
solution ψ (t , x) of eq. (16) with the initial condition (17) is given
by

ψ (t , x) = e−
k2
2m h̄ tψ (x) . (18)

The evolution is not unitary; the wave function ψ (t , x) “vanishes”
with time. Of course, the reason is that

Ĥψ (x) = − ik
2

2m
ψ (x)

=⇒ Ĥψ (t , x) = − ik
2

2m
ψ (t , x) .

Thus, ψ (x) appears to be an eigenfunction of the s.a. Ĥ with a
purely imaginary eigenvalue, which is impossible (in fact, this
means that the function ψ (x) does not belong to the definition
domain of Ĥ).
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We recall that the first paradox is a consequence on the relation(
ψp , [x̂ , p̂]ψp

)
=
(

ψp , x̂ p̂ψp

)
−
(

ψp , p̂x̂ψp

)
= 0, (19)

Obviously, the uncertainty principle and canonical commutation
relations are necessarily violated if (19) holds.
Consider a particle on the whole real axis R with the Hilbert space
L2(R). Here there exists a unique self-adjoint momentum operator
which acts as −i h̄d/dx on their domains of definition. However,
such an operator has no eigenfunctions in L2(R), such that ψp in
(19) do not exist.
Consider a particle on a semiaxis R+ with the Hilbert space
L2(R+). Here there are no self-adjoint momentum operators at all,
and therefore, eigenfunctions ψp in (19) do not exist.
Thus, no one quantity in (19) does not exist in the above two
cases.
Applying von Neumann theory of self-adjoint extensions [1] to the
case of momentum operator on the interval, one can find that there
exists a one-parameter family of self-adjoint operators p̂ϑ with act
as −i h̄d/dx on their domains of definition Dϑ. The function
ψϑ ∈ Dϑ are absolutely continuous on [0, l ] , they and their
derivatives are square integrable on the interval, ψϑ, ψ′ϑ ∈ L2(0, l),
and they obey the following boundary conditions:

ψϑ (l) = e
iϑψϑ (0) , (20)

where 0 ≤ ϑ ≤ 2π , 0 v 2π . Thus, the momentum operator for a
particle on a finite segment is defined nonuniquely.
[1] N.I. Akhiezer and I.M. Glazman, Theory of Linear Operators in
Hilbert Space (Pitman, Boston 1981)
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The eigenfunctions ψϑn (x) , n ∈ Z, of the operator p̂ϑ are

p̂ϑψϑn = pϑnψϑn, ψϑn = N exp
(
i
pϑn

h̄
x
)

,

pϑn = h̄
(
2πn+ θ

l

)
.

A solution of the first above mentioned paradox is related to the
fact that the function xψϑ (x) does not belong to the domain of
definition of the operator p̂ϑ (they do not obey (20)), such that
the commutator [x̂ , p̂θ ] is not defined on such a domain.
Since the Heisenberg uncertainty relation is derived considering
matrix elements of the operator [x̂ , p̂], similar consideration allows
one to explain the second part of the first paradox, related to the
Heisenberg uncertainty relation.
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We recall that the second paradox is a consequence of the
supposition that the Hamiltonian of a free particle in an infinite
rectangular potential well can be represented as Ĥ = p̂2/2m, and,
therefore it commutes with a s.a. momentum operator p̂. Then
both operators must have a common set of eigenfunctions, which
is not true.
One can demonstrate that there exists only one s.a. Hamiltonian Ĥ
of a particle in an infinite rectangular potential well. In particular,
functions from the definition domain of Ĥ obey the condition

ψ(0) = ψ(l) = 0.

As was already said, on the finite interval all s.a. momentum
operators are reduced to a family p̂ϑ. Non of these operators
allows the representation Ĥ=(p̂θ)

2 /2m . Moreover,
eigenfunctions of any p̂ϑ do not belong to the definition domain of
Ĥ. In fact, the operators Ĥ and p̂ϑ do not commute among
themselves and have no common eigenfunctions (this is consistent
with the physical fact that the particle momentum changes due to
a reflection from the wall).
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The third paradox treats matrix elements pmn = (em , p̂en) of the
operator p̂ of a particle on an interval [0, l ], calculated with respect
to the complete orthobasis en (13). It turns out that the matrix
pmn is not Hermitian, contrary to naive expectations. The
incorrect supposition underlying the paradox is that the basis (13)
belongs to the definition domain of a s.a. momentum operator of a
particle on a finite interval [0, l ]. However, we already know that
there exists a family of s.a. momentum operators p̂ϑ, with a
definition domains Dpϑ

. In particular, functions from Dpϑ
must

obey the condition (20). However,

en(l) = (−1)nen(0). (21)

Therefore, does not exist an angle ϑ, one and the same for all n,
such that (21) could be identified with (20). I.e., does not exist a
domain Dpϑ

such that the complete basis en belongs to Dpϑ
, or for

any ϑ some elements of the basis en do not belong to definition
domain of a s.a. operator p̂ϑ, such that both quantities in
inequality (14) do not exist, and, therefore, it has no sence.
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The fourth paradox treats the case of a free particle in an infinite
rectangular potential well on the interval [0, l ], with a s.a.
Hamiltonian Ĥ, for which(

ψ,
(
Ĥ
)2

ψ

)
6=
(
Ĥψ, Ĥψ

)
(22)

in a particular state ψ (x) = Nx (x − l) (15), where N is a
normalization factor. An explanation of this paradox is the
following: As it is known, there exists one s.a. Hamiltonian Ĥ of a
particle in an infinite rectangular potential well. Functions from the
definition domain obey the relation ψ(0) = ψ(l) = 0. One can see
that the state (15) belongs to the domain of the Hamiltonian.
However, the state Ĥψ = const already does not belong to the
domain and, therefore, inequality (22) has no sence.
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EXPLANATION OF THE FIFTH
PARADOX
In the last paradox, one consideres a solution of the Schrödinger
equation for a free particle on the interval with a special choice
(17) of the initial state and discoveres that such a solution
vanishes with time, which means that the evolution is not unitary.
As was aready mentioned this happens since the initial state does
not belong to definition domain of any s.a. Hamiltonian on the
interval, such that the left hand side of the Schrödinger equation is
not defined.
Considering this paradox, we met a function that is a solution of
the Schrödinger equation with a given initial date but with a
nonunitary evolution. In this respect, we ought to note that in QM
we have, in fact, two ways to define the time evolution: the first
one is to solve the Cauchy problem for the Schrödinger equation
with a given initial data and another one is to apply the unitary
evolution operator Û(t),

Û(t) = exp{− i
h̄
Ĥt},

which is bounded and therefore defined everywhere, to any inital
state. In the latter case, the resulting time depending vector alway
exists and his time evolution is unitary. Indeed, let ψn be a
complete set of eigenvectors of Ĥ, and the initial state is ψ. Then
ψ = ∑ anψn, an = (ψn, ψ) , and the state ψU (t) ,

ψU (t) = Û(t)ψ = ∑ ane−iEnt/ h̄ψn , (23)

in any time moment alway exists and the evolution is unitary (the
norm of ψU (t) is conserved with time).
Going back to the fifth paradox, we could construct by the help of
(23) a function ψU (t, x) that correspond to the initial state (17).
However, such a function cannot obey the Schrödinger equation,
since there exist a unique solution (18) of this equation with the
initial condition (17). Thus, taking into accound, we must
conclude that not every function that evolves unitarily obeys
the Schrödinger equation, but only that one which belongs
to the definition domain of a corresponding s.a. Hamiltonian.
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1.60217733× 10−19 C
9.1093897× 10−31 kg
2.99792458× 108 m s−1

6.6260755× 10−34 J s

T � π

√
h̄

2ceαE
exp

(
π
Ec

2E

)
,

Ec =
m2c3

e h̄
≈ 1, 3 · 1016V/cm , α = e2/ h̄c.

for E = Ec , we have

T � π

√
h̄2137
2m2c4

exp
(π

2

)
=

h̄π

mc2
√
2
exp

(π

2

)
= T0

π√
2
exp

(π

2

)
, T0 ' 10−21s
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