Holography and Hadron Physics I

Dmitry Melnikov International Institute of Physics, UFRN

> New Trends – Natal Oct'14

> > K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Plan

1. Holographic engineering

- String theory and holographic correspondence
- Gauge sector
- Matter sector
- Sakai-Sugimoto model
- Klebanov-Strassler model
- 2. Holographic phenomenology
	- Glueballs (spectrum)
	- Mesons (spectrum/couplings)
	- Baryons (couplings/nuclear force/finite density)

KORKARYKERKE POLO

String Theory and Holographic Correspondence

イロトメタトメミトメミト (毛) のんべ

KORKARYKERKE POLO

Why string theory?

- String theory emerged as a theory of hadrons
- It was found to yield a theory of quantum gravity
- String theory is a theory of everything?
- String theory is a theory of nothing?

イロメイ団メイ君メイ君メー君

 2990

Pros

- String theory is very rich and naturally incorporates many physical and mathematical models and methods
- String theory opens a geometrical interpretation of physical phenomena

Cons

• So far string theory does not provide a quantitative description of any realistic physical system

Though string theory cannot be used for a quantitative description of real-life systems it can be a source of intuition about very complicated systems and inspiration for new discoveries

see also lectures by Gary Shiu and Jorge Noronha

Holography

In real life holography is a technique to store a 3d image in a 2d container. The image changes with the change of the position and the orientation of the viewing system

Holography

In string theory holography is a duality between a $d + 1$ and *d*-dimensional theories. It states the existence of two equivalent descriptions of one theory, where the higher dimensional description should include gravity

Duality

$$
Z_{\text{QFT}}\left[J_i\right] = Z_{\text{grav}}\left[g_{\mu\nu}^{\infty}, \Phi_i^{\infty}\right] \qquad \Phi_i^{\infty} \equiv J_i
$$

Correlation functions (Jorge's lectures)

$$
\langle \, \mathcal{O}_1 \cdots \mathcal{O}_n \, \rangle_{\text{QFT}} = \frac{\delta^n Z_{\text{grav}}}{\delta \Phi_1^{\infty} \cdots \delta \Phi_n^{\infty}} \bigg|_{\Phi_i = 0}
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The duality relates a strongly coupled QFT and weakly coupled gravity

Geometry

Geometry

Geometry

Geometry

KORKARYKERKE POLO

Bottom-up approach

Consider simplified gravity models in *AdS*-like space. The dual field theory is not exactly known. Good for qualitative analysis and universal properties: example of η/s ratio (see Jorge's lectures)

Top-down approach

Derive the construction from 10d string theory. Technically involved. Limited number of examples. Better control on the QFT side (examples in these lectures)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

AdS/CFT correspondence

Maldacena's conjecture: Type IIB string theory on $AdS_5 \times S^5$ with N_c units of the RR flux is dual to the $\mathcal{N} = 4$ SYM theory with gauge group $SU(N_c)$

> type IIB $\mathcal{N} = 4$ Isometries of $AdS_5 \leftrightarrow$ Conformal group $SO(2,4)$ = $SO(2,4)$ Isometries of $S^5 \rightarrow R$ -symmetry $SO(6)$ = $SU(4)$

> > **KORKARYKERKE POLO**

The conjecture has been tested against many non-trivial checks

Nonabelian Gauge Theories from Branes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Strings and D-branes

D-branes are loci for the endpoints of open strings. The effective theories of strings ending on the D_{*p*} branes are $p + 1$ dimensional gauge theories

single D-brane $\rightarrow U(1)$ theory *N* D-branes $\rightarrow U(N)$ theory

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

Breaking SUSY

- Start from a 5d theory: *N_c* D4-branes in type IIA
- Compactify 1 dimension
- Impose antisymmetric boundary conditions on fermions

Antisymmetric bc introduce mass for the fermions \equiv SUSY breaking

KORKARYKERKE POLO

KK scale

Radius of the compact dimension $(S¹)$ introduces a scale in the theory

$$
M_{KK}=\frac{1}{R}
$$

- This is not a conformal theory
- The M_{KK} scale is manifest in the IR geometry
- Theory contains a KK tower of unwanted massive states

KID KINK VEX KEX NE YORCH

IR geometry

$$
ds^{2} = \left(\frac{u}{R_{D4}}\right)^{3/2} \left[-dt^{2} + \delta_{ij}dx^{i}dx^{j} + f(u)dx_{4}^{2}\right] + \left(\frac{R_{D4}}{u}\right)^{3/2} \left[\frac{du^{2}}{f(u)} + u^{2}d\Omega_{4}^{2}\right]
$$

$$
R_{D4}^3 = \pi g_s N_c l_s^3
$$
, $f(u) = 1 - \left(\frac{u_\Lambda}{u}\right)^3$

To avoid singularity one sets

$$
2\pi R = \frac{4\pi}{3} \left(\frac{R_{D4}^3}{u_{\Lambda}}\right)^{1/2}
$$

Flux

$$
F_4 = \frac{(2\pi)^3 l_s^3 N_c}{V_4} \text{vol}(S^4) , \qquad \int_{S^4} F_4 \sim N_c
$$

D-branes are replaced by flux, which backreacts on the metric

Running dilaton

$$
e^{\phi} = g_s \left(\frac{u}{R_{D4}}\right)^{3/4}
$$

u-dependence of the dilaton leads to a diverging coupling in the UV

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Dual theory

- Low-energy theory of this construction is $U(N_c)$ YM+KK modes
- Geometrical parameters are mapped onto the parameters of the dual QFT

$$
R \to \Lambda \sim M_{KK} , \qquad g_{YM}^2(\Lambda) = 2\pi \frac{M_{KK}}{M_s} g_s
$$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

• The theory is not UV-complete

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Matter fields

Add different types of branes (gauge+flavor)

Chiral matter: to have it we need have either branes at singularities, intersecting branes or magnetized branes (see Gary's lectures)

KORKARYKERKE POLO

Probe limit

Add N_f flavor branes, such that $N_f \ll N_c$. Ignore the backreaction of the geometry

Effective action

$$
S_{\text{DBI}} = -(2\pi\alpha')^{-(p+1)/2} \int_{Dp} d^{p+1}x \, e^{-\phi} \, \text{Tr} \, \sqrt{-\det(g_{ab} + 2\pi\alpha' \mathcal{F}_{ab})}
$$

Chern-Simons actions

$$
S_k = (2\pi\alpha')^{-(p+1)/2} \int_{Dp} e^{2\pi\alpha'\mathcal{F}} \wedge C_k
$$

KID KINK VEX KEX NE YORCH

generalization of the action of a relativistic charged particle

Stable embeddings

- Add few flavor branes $N_f \ll N_c$
- Solve for the DBI+CS action to find the geometry of the embedding (profile of the flavor branes)
- Check the spectrum for tachyonic modes

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 9 Q Q ·

System

Add *N^f* probe *D*8 and anti-*D*8-branes

Stable configurations

General stable profiles are classified by a new parameter *L*, not present in QCD. In the "antipodal" case $L = \pi R$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ (할 수 있다)

Chiral symmetry

- In these configurations the orientation of the *D*8 changes as the lowest point of the embedding is passed: *D*8-*D*8
- Each *D*8 ($\overline{D8}$) has a $U(N_f)$ gauge theory on its worldvolume: $U(N_f)_L \times U(N_f)_R$
- *D*8 and $\overline{D8}$ have no point to end in this geometry. They have to reconnect: chiral symmetry breaking

KORKARYKERKE POLO

• This model has massless pions

Finite temperature phases

At high *T* deconfinement and chiral symmetry restoration occur

Summary of the model

- We expect Sakai-Sugimoto model to be like very strongly coupled version of QCD
- but it has extra stuff ...
- The model provides a geometrical picture of chiral symmetry breaking with many characteristic features

In the next lecture we will review the phenomenology of the model (spectrum, couplings, baryons)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

K ロ K (日) K 경 K (동) K 경 (동) X (8)

Keeping some SUSY

AdS/CFT: $AdS_5 \times S^5$ $SO(6)$ $\Rightarrow \mathcal{N}=4$ KW: $AdS_5 \times T^{1,1}$ $SU(2) \times SU(2) \Rightarrow \mathcal{N} = 1$

KW model

- Conformal symmetry is still preserved
- The space transverse to the Minkowski space-time dimensions is a 6d cone – conifold

$$
\sum_{i=1}^4 z_i^2 = 0
$$

KORKARYKERKE POLO

• Dual theory is a theory of D3-branes compactified on $T^{1,1}$

Breaking conformal invariance

KORKARYKERKE POLO

 $\sum_{ }^{ 4}$ *i*=1 $z_i^2 = \epsilon$

² Deformation introduces a scale in the theory

To support such a geometry extra branes need to be added (*M* fractional D3-branes)

Dual theory

- It is a $\mathcal{N} = 1$ SUSY Yang-Mills theory with extra stuff
- The gauge group is $SU(N + M) \times SU(N)$
- Matter sector contains two doublets of bifundamental fields *Aⁱ* and *Bⁱ*

• The theory has a special marginal deformation

$$
W = \lambda \operatorname{Tr} \epsilon^{ik} \epsilon^{jl} A_i B_j A_k B_l
$$

KORKARYKERKE POLO

Cascade

The theory has two couplings g_1 and g_2 which run in the opposite directions

At strong coupling the theory undergoes a Seiberg duality

$$
SU(N_c) \times SU(N_f) \to SU(N_f - N_c) \times SU(N_f), \qquad N_f > N_c
$$

Cascade

The theory has two couplings g_1 and g_2 which run in the opposite directions

$$
SU(M) \leftarrow SU(2M) \times SU(M) \leftarrow \dots
$$

$$
\dots \leftarrow SU(N-M) \times SU(N) \leftarrow SU(N+M) \times SU(N) \leftarrow \dots
$$

イロト (個) (差) (差) (差) の Q Q

Spontaneous breaking of $U(1)_B$

The hope of Klebanov *et al.* was to construct a gravity dual of SYM, $but \ldots$

Baryonic operators $(N_c = N_f)$

$$
\mathcal{B} = \epsilon_{i_1 i_2 \dots i_{2M}} (A_1)^{i_1}_{1} (A_1)^{i_2}_{2} \cdots (A_1)^{i_M}_{M} (A_2)^{i_{M+1}}_{1} \cdots (A_2)^{i_{2M}}_{M}
$$

$$
\overline{\mathcal{B}} = \epsilon_{i_1 i_2 \dots i_{2M}} (B_1)^{i_1}_{1} (B_1)^{i_2}_{2} \cdots (B_1)^{i_M}_{M} (B_2)^{i_{M+1}}_{1} \cdots (B_2)^{i_{2M}}_{M}
$$

KID KINK VEX KEX NE YORCH

These operators condense in the KS theory and there are Goldstone bosons in the spectrum

Conclusions

Next time we talk about

Phenomenology of the Sakai-Sugimoto and Klebanov-Strassler model

KORKARYKERKE POLO

- Spectrum of glueballs (confronting lattice results?)
- Spectrum of mesons in the Sakai-Sugimoto model
- Meson couplings
- Phenomenology of baryons
- Baryons at finite density