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AA collisions : Glasma & the Ridge

ATLAS Preliminary 2<p?p®<3GeV
T
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Nucleus—nucleus collisions

@ How to compute particle production in AA collisions ?
@ Very complicated : non-linear effects enter at all stages !

e in both incoming wavefunctions: gluon saturation
e in the scattering process : multiple interactions

e in the partonic medium created by the scattering: final-state
interactions
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Nucleus—nucleus collisions

@ How to compute particle production in AA collisions ?
@ Very complicated : non—linear effects enter at all stages !
o treat each of the incoming nucleus as a CGC

e exactly solve the classical Yang—Mills equations with 2 sources

e use the above solution as an initial condition for the subsequent
evolution of this partonic matter (e.g. for hydrodynamics)
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Nucleus—nucleus collisions

@ The Color Glass Ccondensate is the right effective theory to describe
the initial conditions for heavy ion collisions
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Light—cone variables

@ At high energy it is convenient to use light—cone variables

t

] I
z _\/5( + )
, pi:\}i(poipz)

P =0"p,p1)

prx=paz +pat—p -z

@ Ultrarelativistic right mover :

o z~t = 2~ ~0 (Lorentz contraction) & T ~ /2t (LC time)
o p.~py=E= p'~(p",0,0.) withp™ =2E

o Left mover: the roles of ™ and 2~ (or p* and p~) get interchanged
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The C effective theory

5 Alp]
@ An effective theory for the small-z gluons in the nuclear wavefunction

o classical color fields A¥ radiated by randomly distributed color charges
representing the ‘fast’ partons with 2’/ > x

e obtained by solving the classical Yang—Mills equations
D F"(x) = Jh(2) = 8"78(x7)p" (@)
o large occupation numbers n ~ 1/a, <= strong fields A’ ~ 1/g
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The C effective theory

e Wy [p| : functional probability distribution for the color charges

o a kind of Master ‘unintegrated gluon distribution’

e information about all the n—point gluon correlations with n > 2

(@) ... )y = / D] Wy lo] o (@)’ (y) ...

o for uncorrelated color charges: a Gaussian in p (MV model)
e obtained by integrating out the ‘fast’ gluons in layers of Y =1In1/z
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Balitsky—JIMWLK equation

(Jalilian-Marian, lancu, McLerran Weigert, Leonidov, Kovner; 1997-2000)

e JIMWLK : Functional evolution equation for Wy [p]

0 0 )

aT/WY[M = HWy|p] HZO{S% x[p] 5p

e initial condition: randomly distributed valence quarks (MV model)
e equivalent to an infinite hierarchy of non—linear equations (Balitsky, 96)
e exact numerical solutions available (2D—lattice)

o recently extended to next-to-leading-logarithimic accuracy: ag(asY)™
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The CG  factorization for AA

@ Numerically solve classical YM equations with 2 sources (2D lattice)
D, F"M(z) = 6" pi(x) + 0" pa(x)

@ Decompose the solution A% (z) in Fourier modes

> gluon spectrum ‘event-by-event’ (for given configurations of p; and ps)

@ Average over p; and ps using the CGC distributions of the 2 nuclei:

dN dN
—— ) = [[Dp1Dps] W i —
<dY dQPJ_ > /[ pl p2] chame [pd cham+Y [02] dY deJ_

> JIMWLK evolution from Yjeam up to the rapidity Y of the produced gluon

class
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Gluon spectrum from classical Yang—Miills
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> Numerical solutions to JIMWLK & CYM eqs. by T. Lappi (2011)
> Left: unintegrated gluon distribution for different values of Y = In(1/x)

> Right: spectrum of gluons produced in AA for different energies (y o< In E)

@ Particle production at high energy can be computed from QCD ©
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Gluon spectrum from classical Yang—Miills
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> Numerical solutions to JIMWLK & CYM eqs. by T. Lappi (2011)

> Left: unintegrated gluon distribution for different values of Y = In(1/x)

> Right: spectrum of gluons produced in AA for different energies (y o< In E)

e Particle production at high energy can be computed from QCD ©

@ Hadron spectra can be modified by final state interactions ...

@ ... but gross features and special correlations will survive !
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Boost invariance & longitudinal expansion

@ The classical field is invariant under a boost along the collision axis

> depends upon the proper time 7 but not upon the space—time rapidity 7;

T = const

T = V12— 22 = Vot

Ns

= —In = —In—
2 t—=z 2 x

1 | t+z 1 I m:“
@ Under a boost with velocity vy :

T is invariant

Ns — ns + B with tanh 5 = g
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Boost invariance & longitudinal expansion

@ The classical field is invariant under a boost along the collision axis

> depends upon the proper time 7 but not upon the space—time rapidity 7;

T = const Ty
v, = sinf

v. = cosl

e Particle distribution dN/dn is independent of 7

> particles move away from the interaction point at the speed of light

1.1
PR A §In1+vz
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Boost invariance & longitudinal expansion

@ The classical field is invariant under a boost along the collision axis

> depends upon the proper time 7 but not upon the space—time rapidity 7;

T = const
F n = const v, = sin ¢

|
f /
|

€T

v. = cosl

@ Free streaming leading to longitudinal expansion (Bjorken, 1983)

> particles separate from each other in the z direction

> radial expansion remains negligible until 7 ~ R4
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Multiplicity : rapidity dependence

e RHIC (PHOBOS) data for dNg,/dn as a function of 7
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> flat in 7 around midrapidity : ‘Feynman plateau’

o> for produced particles, 9] < Nbeam
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Long—range rapidity correlations probe early times

@ Boost invariance leads to long—range correlations in rapidity

@ Such correlations can be measured in the final state and traced back
to the early stages

@ Indeed, long—range correlations in rapidity are necessarily generated at
early stages, where particles propagating along very different angles
were still in causal contact with each other

detection

freeze out

latest correlation
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The Ridge in AA

@ A natural explanation for the ‘ridge’ :

e di—hadron correlations long—ranged in An & narrow in A¢
e abundantly observed in AA collisions at RHIC and the LHC

dNpair AN AN

A2py A d2py de  d2py dipy d2pg) diy
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The Ridge in AA

@ A natural explanation for the ‘ridge’ :
e long—range correlations in An : boost invariance at early times

e collimation in A¢ can be explained by radial flow

dNpair AN AN

A2py A d2py de  d2py diy d2pg) diy
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Glasma

e Right after the collision, the chromo-electric and chromo-magnetic
fields are purely longitudinal

@ Flux tubes which extend between the recessing nuclei

‘glasma’ (from ‘glass’ + ‘plasma’) (McLerran and Lappi, 06)

2
gut

@ At time 7 ~ 1/Qs, the transverse fields are regenerated
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From flux tubes to particles

@ At time 7 ~ 1/Qs, the glasma flux tubes break into particles (gluons)

@ Gluons emitted from the same flux tube are correlated with each other

e correlation length in the transverse plane: Ar; ~ 1/Q;
o correlation length in rapidity : An ~ 1/a

e to start with, this correlation is isotropic in A®
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From flux tubes to particles

@ At time 7 ~ 1/Qs, the glasma flux tubes break into particles (gluons)

@ Gluons emitted from the same flux tube are correlated with each other

e correlation length in the transverse plane: Ar; ~ 1/Q;

e correlation length in rapidity : An ~ 1/ay

e in presence of radial flow, there is a bias leading to collimation in A®
> more particles along the radial velocity v, than perpendicular to it
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The Ridge in pp and pA

@ LHC : quite surprisingly, a ridge is also observed in p+p and p+A
events with unusually high multiplicity

CMS pPb \[s,,, = 5.02 TeV, N > 110
(d) CMS N> 110, 1.0GeV/c<p_<3.0GeV/c PR NS VN2
T 1<p, <3GeVic

(b)

= 519 18
< =
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@ What is the origin of the azimuthal collimation 7
e Can flow develop in such small systems (~ 1 fm) ?

@ This might reflect the momentum correlations at early times (glasma)
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The thermalization puzzle

e Strong experimental evidence (RHIC, LHC) in favor of an intermediate
phase of quark—gluon plasma in ‘local thermal equilibrium’
e the parton distribution is isotropic in momentum space and slowly

varying in space and time; e.g.

1
n(t,x,p) = ETE1 where T =T(t,x) is slowly varying

@ Strongest evidence in that sense: the great success of nearly ideal
hydrodynamics in describing collective phenomena like elliptic flow

o requires small thermalization time: 79 <1 fm ~ 10723 secs

@ This is very puzzling though

o the early distribution is highly anisotropic (‘glasma flux tubes')
e to equilibrate, particles need to efficiently exchange 4—momentum

o difficult to achieve for an expanding, weakly-coupled, system
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The thermalization puzzle (2)

@ Just after the collision, the partonic matter is highly anisotropic

e the glasma flux tubes have ‘negative longitudinal pressure’ :
they oppose to expansion (like a string of rubber)

e 0 0 0 e 00 O
0 ¢/3 0 0 0 ¢ 0 O
uv 1224 .
Teq 0 0 ¢/3 0 Tinitian = 0 0 ¢ O
0 O 0 ¢/3 0 0 0 —¢

e in equilibrium: Pr = P, =¢/3 ; in the early glasma: Pr =¢ = —Pp,

@ The original anisotropy can be amplified by the longitudinal expansion
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Thermalization in perturbation theory

@ Particles can exchange energy and momentum through collisions.

@ Weak coupling: the dominant mechanism is 2 — 2 elastic scattering

I

o Cross—section (o) scales like |amplitude|?, hence like g* ~ o2
@ Mean free path (/) = average distance between successive collisions
1 1
~ Gomsity %0 a2
e Typical equilibration time: 7oq ~ (/v o 1/a?
@ Weakly coupled systems have large equilibration times | &
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Thermalization in perturbation theory

@ Particles can exchange energy and momentum through collisions.

@ Weak coupling: the dominant mechanism is 2 — 2 elastic scattering

e Gl

o Cross—section (o) scales like |amplitude|?, hence like g* ~ o2

@ Mean free path (/) = average distance between successive collisions

1 1

~Y — (X —
; 2
density x ¢ = a2

e Typical equilibration time: 7. ~ (/v o 1/a?

@ A compelling argument in favor of strong coupling and AdS/CFT
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The role of the strong fields

@ Heisenberg's uncertainty principle requires
1
mean free path / 2> de Broglie wavelength A ~ —
p

@ In general, weakly interacting systems have ¢ > A

o weakly coupled QGP, temperature T': A\ ~ 1/T while £ ~ 1/[a?T]

@ However, the situation can change for a particle interacting with a
strong electric, or magnetic, field, as in the glasma

o domain of size Q! where the (chromo) magnetic field is |B| ~ Q2%/g

d . B
Lorentz force : d—z; =gux B = 0 ~ 9B ~ Qs
p

©B
o time spent in the domain 7 ~ Q7! = Af ~ O(1) g ,,,,,,,,

@ Mean free path £ ~ Q;! ~ 1/p : as low as permitted by Heisenberg
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The role of the strong fields

@ Heisenberg's uncertainty principle requires
1
mean free path / 2> de Broglie wavelength A ~ —
p

@ In general, weakly interacting systems have ¢ > A

o weakly coupled QGP, temperature T': A\ ~ 1/T while £ ~ 1/[a?T]

@ However, the situation can change for a particle interacting with a
strong electric, or magnetic, field, as in the glasma

o domain of size Q! where the (chromo) magnetic field is |B| ~ Q2%/g
d . B
Lorentz force : @ _ gux B = 0 ~ 9z Q.
p

! '
©B
o time spent in the domain 7 ~ Q;! = Af ~ O(1) 4 ,,,,,,,,

@ Short mean free path = rapid thermalization !
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Thermalization at weak coupling & strong fields

(Epelbaum and Gelis, 2013)

@ Numerical solution to classical Yang—Mills eq. confirms the anisotropy

0.1

O\/
TPy
. . TPy

0 0.5 1 1.5 2 2.5 3
2
gt

o the saturation momentum Q, = g*/ sets the scale
o 7¢ =7(2Pr + Pr) ~ const. (longitudinal expansion)

e TPy starts by being negative, then it becomes positive, but it remains
much smaller than 7Pp
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Thermalization at weak coupling & strong fields

(Epelbaum and Gelis, 2013)
@ However, this (boost—invariant) classical solution is unstable under
(rapidity—dependent) quantum fluctuations.
@ The fluctuations can be added to the initial conditions

o, =810 (g =0.1)

T [fm/c]

0.01 0.1 1 2 3 4
T T

+1 e

12
13

pr/c
P/ I

0.1 1.0 10.0 20.0 30.0 40.0
QT

o for very small g = 0.1, the solution preserves boost invariance, as at LO
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Thermalization at weak coupling & strong fields

(Epelbaum and Gelis, 2013)

@ However, this (boost—invariant) classical solution is unstable under
(rapidity—dependent) quantum fluctuations.

@ The fluctuations can be added to the initial conditions

o, =2107% (g =0.5)

T [fm/c]
0.01 0.1 1 2 3 4
+1
12 T 4 .
13 ) Y A )
. P WA WA AW
o ’\/ I YT . i
Pr/e
PL/e
1 Lo
i
0.1 1.0 10.0 20.0 30.0 40.0

Qs T
e for g = 0.5, it approaches isotropy: Pr/Pr ~ 0.7 ©)
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Small n/s at weak coupling but strong fields

viscosity mean free path

entropy density ~ de Broglie wavelength ™~

o Infinitely strong coupling (AdS/CFT) : /s = 1/4n

n /
—_~ =~ 1
Pl o(1)

(in units of h)

@ Glasma : strong classical Yang—Mills fields at weak coupling
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Quark—Gluon Plasma
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@ The quark—antiquark potential increases linearly with the distance.

@ Quarks (and gluons) are confined into colorless hadrons
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Quark—antiquark potential at finite T

@ With increasing the temperature T, the potential flattens out at
shorter and shorter distances

| Uy(rT) [MeV]
400 1 “"“M.,....-a
® 00 00 0 0 00
200 r
O L
-200 + B
1.95T, —o—
2.60T, —o—
I 450T. —o |
-400 7.50Tc o

01 02 03 04 05 06 07 08

@ This leads to a ‘phase transition’ at some ‘critical temperature’ T, :
from Hadron Gas to a Quark—Gluon Plasma (QGP)
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Debye screening

@ QGP : a system of quarks and gluons which got free of confinement

@ How is that possible 777
® exp( - r
Op @ ="l
‘ r
@ In a dense medium, color charges are screened by their neighbors

@ The interaction potential decreases exponentially beyond the Debye
radius RDebye = 1/777/Debye

e Hadrons whose sizes are larger than Rpcpye cannot bind anymore
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Deconfinement phase transition

@ oo
Q%02
o0 %e
.. .. o)
@
Density
— -
Individual Quark gluon
nucleons plasma

@ When the nucleon density increases, they overlap, enabling quarks and
gluons to hop freely from a nucleon to its neighbors

D> Rpebye becomes smaller than the typical hadron radius Ry, ~ 1 fm

@ The hadrons melt into quarks and gluons
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Quark—Gluon Plasma

o Lattice calculations of the pressure in QCD at finite T

p/T4 Ps/T 4

3 flavour
2+1 flavour —

pure gauge

T [MeV]

100 200 300 400 500 600

@ Rapid increase of the pressure

e around 7' ~ 270 MeV with gluons only (‘pure gauge’)
e around 7"~ 150 to 180 MeV with light quarks
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Quark—Gluon Plasma

o Lattice calculations of the pressure in QCD at finite T

prt

100

3 flavour
2+1 flavour

pure gauge

T [MeV]

200

300 400

500 600

= /p?+m2

The expected rise in the number of active degrees of freedom due to
the liberation of quarks and gluons

o at T' < T, : 3 light mesons (70, 7)
o at T > T, : 52 d.of. (gluons: 8 x 2 = 16; quarks: 3 x 3 x 2 x 2 = 36)
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Quark—Gluon Plasma

o Lattice calculations of the pressure in QCD at finite T

p/T4 Ps/T 4

. [ ¥
9= % | (on)3 er/T _1

d>p E,
Eq = dq/ (27r)3 eEp/T_|_ 1

3 flavour
2+1 flavour 2

pure gauge

T [MeV]

100 200 300 400 500 600

The expected rise in the number of active degrees of freedom due to
the liberation of quarks and gluons

o at T' < T, : 3 light mesons (70, 7)
o at T > T, : 52 d.of. (gluons: 8 x 2 = 16; quarks: 3 x 3 x 2 x 2 = 36)
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Possible first—order scenario with critical bubbles

© Quark
© Antiquark

%
% Gluon

@ If the transition was first—order, it would go through a mixed phase
containing a mixture of hadronic and QGP phases
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Possible first—order scenario with critical bubbles

© Quark
© Antiquark

%
£ % Gluon
= ;

@ This would be the case if the 3 ‘active’ quarks (u, s, d) were either
massless or infinitely massive (‘pure gauge’)

New Trends in High-Energy Physics From CGC to QGP — Il Edmond lancu 30 / 44



A cross—over

@ This is not the case for the physical quark masses (2 light + 1 massive)

@ The actual scenario is a ‘cross—over’ (no discontinuity)
the Wuppertal-Budapest lattice group, Nature, 443 (2006) 675)
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QCD thermodynamics: lattice

o L T T SBI T4 T T T T
3 N 1° T
mmm N=8 ] T 0.8
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e With increasing temperature, the coupling g(7") decreases, so the
exact result approaches towards the Stefan—Boltzmann limit

2

s . 7
Psgp = —{2(N? -1 — N.N; s T*
SB 90{ (N )+2 f}

e ForT' 2 2.5T., P(T) — Psp(T) is about 20%
. is this small or large 7

@ Can one understand this difference in perturbation theory 7
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Perturbation theory for the pressure

T 3
P=_—-InZ, Z = Z e PEn — Ty e PH (partition function)
n

|4
£ TN
@ Zero order (g — 0) : one-loop graphs 3 g ‘1\ )
vy Qo N

e Order g% ~ a, : two-loop graphs

o Order ¢ ~ a2/? : ring diagrams

o Infinitely many diagrams formally starting at O(g*) but which

contribute already at O(g%) : ‘plasmon effect’ (see below)
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Perturbation theory shows no convergence
P/P,

14 N\ B

120 — T

o By itself, the O(g?) seems to do a pretty good job. However...

@ Successive perturbative approximations — O(g?), O(g?), O(g%),
O(g°) — jump up and down, without any sign of convergence.

@ Increasingly larger renormalization scale uncertainties (y — 4p)

New Trends in High-Energy Physics

From CGC to QGP - Il

Edmond lancu 34 /44



Perturbation theory shows no convergence

P/PR
1.4F N\ B

120 -

@ Is this a non-perturbative effect inherent to QCD 7
An indication of strong coupling ?

@ A similar problem appears for any field theory at finite temperature,
including weakly coupled QED, or scalar ¢* theory !

o At finite T, perturbation theory gets complicated by medium effects
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Recall : Debye screening

g;‘%@/' exp( - Myepye 1)

v(r) = ZR e |
@ Thermal efFect associated with dressing the propagator: 1mpepye ~ g7’

@ The electric gluon acquires a mass which is ‘non—perturbative’ at ‘soft’
momenta k ~ g1 :

1 1 m2D m2D 2
GOO(k):m = 14:2[1—162+(k2>
———

fine ! not fine !
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Ring diagrams

@ The sum of the ring diagrams reconstructs the dressed propagator :

(ST0TT, ‘}7 >

Q “’A £58 \ ’% % £ @
E §+ C% +%5 @ SERSE é 5
s ‘\Q gy %@f T

@ The Bose-Einstein thermal distribution is divergent as k — 0

1 T 1

> large occupation numbers for the soft thermal gluons

@ This divergence is cut off by Debye screening at k& ~ ¢T', but this
results in an enhancement ~ 1/g

@ The resummation of mp = odd powers in ¢ in perturbation theory

@ An expansion in powers of g and not oy, = lack of convergence !

s =¢*/Ar =02+03 = g~ 1.5+2
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Hard Thermal Loops

@ In a gauge theory, gauge symmetry requires (via Ward identities) the
generalization of the Debye mass to generic n—point amplitudes:

‘Hard Thermal Loops' (Braaten and Pisarski, 1990; Blaizot, E. I., 1992)

3 1
2 <

%

2, 5 2,
— ~T
0 p
o9 FHEOTT
- Doy,

I3 N

N,
B

[ o510l

e

G

S

= S =
ko~ T St g =2¢

000000
0

@ HTL's : one loop diagrams with internal momenta p ~ O(T") (‘hard’)
and external momenta k; ~ O(gT) (‘soft’)

@ Physical interpretation: collective phenomena in the QGP

@ Genuinely leading order effects that must be resummed to all orders,
via reorganizations of the perturbative expansion
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HTL-resummed entropy

S/Ssp
1

0.9

0.8

0.7

0.6
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@ ‘2-particle-irreducible’ resummation (HTL—dressed propagators)
(J.-P. Blaizot, A. Rebhan, E. I., 2000)

@ Physical picture: weakly coupled quasiparticles.

e Good agreement with the lattice data (Bielefeld) for 7" = 2.57...
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HTL-resummed pressure
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T MeV)
@ HTL-resummed perturbation theory to 3 loop order
(Andersen, Leganger, Strickland, Nan Su, 2011)

@ When properly organized, perturbation theory is remarkably successful
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Quarkonia melting

@ Recall : a hadron whose size is larger than the Debye radius
Rp = 1/mp cannot survive in the plasma

@ Quarkonia : bound states of heavy quarks (charm ¢ or bottom b)

> small size R ~ 1/m¢g == can survive up to higher temperatures

e Two families (including excited states) :
> c¢ (charmonium, m, = 1.3 GeV) : J/9(1S), ¥(25), x.(1P)
> bb (bottomium, m;, = 4.2 GeV) : T(15), Y(25), Y(39)

S ol . T )
° :
equential suppression )
> excited states are larger and melt
before the low energy ones Y(25)
T/(1s)

> bottomium family melts after the charmonium one )
A

@ Quarkonia melting acts as a thermometer !
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T suppression at the LHC (CMS)

@ The T family is better suited since less subjected to ambiguities
> no recombination since less bb pairs than cc

(at LHC : ~ 100 c€ pairs in central Pb—Pb collisions = recombination)
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@ Very clean successive suppression pattern for the T's
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Recall: Multiplicity : energy dependence

o Particle multiplicity dN/dn oc Q%(A) ~ s*s/2

UAS, pp NSD
14 CDF, pp NSD
CMS, op NSD T — T
ALICE, pp NSD 0.1
12 UAL, pp NSD

ALICE, AA(0-5%)
BRAHMS, AA(0-5%)
PHENIX 1, AA(0-5%)
PHENIX 2, AA(0-5%)
STAR, AA(0-5%)
NAS0, AA(0-5%)

EJe4dPr*AO0OD D

\
EEEE FEETE FRETE L YEEE FERT FEEe i

Saturation (CGC)
6 =
. (2/Npar)dN N A/dn’ ,1‘;‘:‘/
C] v
I o2
) - - dN_ /dn
0 PP B B |
10" 10° 10° 10

Vs [GeV]

@ Slight difference between energy growth in pp and AA
(see Levin, Rezaeian, '11)
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Multiplicity in HIC at the LHC

Centrality dependence

)/2)

® O Pb-Pb 2.76 TeV ALICE
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6,7 /o™ . (e DPMUET I[10]
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[ Saturation [— — Armesto et al. [12]
[ A S Kharzeev et al. [13]
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)

with A. Dumitru Npart
@ Excellent fit by the CGC approach

o All the models include some form of saturation
> HIJING : energy dependent low—py cutoff
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The geometry of a HIC

Non-central 2/
collision

“peripheral” collision (b ~ b
“central” collision (b ~ 0)

max)

Reaction plane

Number of participants (N,,): number of incoming nucleons
(participants) in the overlap region
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