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AA collisions : Glasma & the Ridge

vn from 2–particle correlations
〈

dNpairs

d∆φ

〉
∝ 1 + 2

∞∑

n=1

〈
v2n
〉

cos(n∆φ)

The reference phases Ψn drop out in the convolution !
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < paT, p

b
T < 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality
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Nucleus–nucleus collisions
Introduction to AA collisions

Bookkeeping

Inclusive gluon spectrum

Loop corrections

CERN

François Gelis – 2007 Lecture III / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 9/65

Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)

How to compute particle production in AA collisions ?

Very complicated : non–linear effects enter at all stages !

in both incoming wavefunctions: gluon saturation
in the scattering process : multiple interactions
in the partonic medium created by the scattering: final–state
interactions
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Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)

How to compute particle production in AA collisions ?

Very complicated : non–linear effects enter at all stages !

treat each of the incoming nucleus as a CGC
exactly solve the classical Yang–Mills equations with 2 sources
use the above solution as an initial condition for the subsequent
evolution of this partonic matter (e.g. for hydrodynamics)
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Nucleus–nucleus collisions

Introduction to AA collisions

Bookkeeping

Inclusive gluon spectrum

Loop corrections

CERN

François Gelis – 2007 Lecture III / III – School on QCD, low-x physics, saturation and diffraction, Copanello, July 2007 - p. 9/65

Initial particle production

■ Dilute regime : one parton in each projectile interact

■ Dense regime : multiparton processes become crucial
(+ pileup of many simultaneous scatterings)

The Color Glass Ccondensate is the right effective theory to describe
the initial conditions for heavy ion collisions
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Light–cone variables

At high energy it is convenient to use light–cone variables

x± =
1√
2

(
t± z

)

p± =
1√
2

(
p0 ± pz

)

pµ =
(
p+, p−,p⊥

)

p · x = p+x− + p−x+ − p⊥ · x⊥
Ultrarelativistic right mover :

z ' t =⇒ x− ' 0 (Lorentz contraction) & x+ '
√

2t (LC time)

pz ' p0 ≡ E =⇒ pµ '
(
p+, 0,0⊥

)
with p+ =

√
2E

Left mover: the roles of x+ and x− (or p+ and p−) get interchanged
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The CGC effective theory

An effective theory for the small–x gluons in the nuclear wavefunction

classical color fields Aµa radiated by randomly distributed color charges
representing the ‘fast’ partons with x′ � x

obtained by solving the classical Yang–Mills equations

Dab
ν F

νµ
b (x) = Jµa (x) ' δµ+δ(x−)ρa(x⊥)

large occupation numbers n ∼ 1/αs ⇐⇒ strong fields Aia ∼ 1/g
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The CGC effective theory

WY [ρ] : functional probability distribution for the color charges

a kind of Master ‘unintegrated gluon distribution’

information about all the n–point gluon correlations with n ≥ 2

〈ρa(x)ρb(y) . . . 〉Y =

∫
[Dρ] WY [ρ] ρa(x)ρb(y) . . .

for uncorrelated color charges: a Gaussian in ρ (MV model)

obtained by integrating out the ‘fast’ gluons in layers of Y = ln 1/x
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Balitsky–JIMWLK equation
(Jalilian-Marian, Iancu, McLerran Weigert, Leonidov, Kovner; 1997–2000)

JIMWLK : Functional evolution equation for WY [ρ]

∂

∂Y
WY [ρ] = HWY [ρ] H = αs

δ

δρ
χ[ρ]

δ

δρ

initial condition: randomly distributed valence quarks (MV model)

equivalent to an infinite hierarchy of non–linear equations (Balitsky, 96)

exact numerical solutions available (2D–lattice)

recently extended to next-to-leading-logarithimic accuracy: αs(αsY )n
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The CGC factorization for AA

Numerically solve classical YM equations with 2 sources (2D lattice)

DνF
νµ(x) = δµ+ρ1(x) + δµ−ρ2(x)

Decompose the solution Aµa(x) in Fourier modes

B gluon spectrum ‘event-by-event’ (for given configurations of ρ1 and ρ2)

Average over ρ1 and ρ2 using the CGC distributions of the 2 nuclei:

〈
dN

dY d2p⊥

〉
=

∫
[Dρ1Dρ2]WYbeam−Y

[ρ1]WYbeam+Y
[ρ2]

dN

dY d2p⊥

∣∣∣∣
class

B JIMWLK evolution from Ybeam up to the rapidity Y of the produced gluon

Introduction

Bookkeeping

Classical fields

Factorization

● What is the problem ?

● Leading order

● Next to Leading Order

● Initial field perturbation

● JIMWLK Hamiltonian

● Extensions

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 36

What is the problem ?

■ For the single gluon spectrum in AA collisions, one would
like to establish a formula such as :

fi
dN

d3~p

fl

=
LLog

Z
ˆ
Dρ1 Dρ2

˜
WYbeam−y [ρ1] Wy+Ybeam

[ρ2]
dN

d3~p

˛
˛
˛
˛
LO

with
∂

∂Y
WY = H W

Y

p

ρ1ρ2 y + Ybeam- Ybeam

◆ All the leading logs of 1/x1,2 are absorbed in the W ′s

◆ The W ′s obey the JIMWLK evolution equation

New Trends in High-Energy Physics From CGC to QGP – III Edmond Iancu 8 / 44



Gluon spectrum from classical Yang–Mills
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B Numerical solutions to JIMWLK & CYM eqs. by T. Lappi (2011)

B Left: unintegrated gluon distribution for different values of Y = ln(1/x)

B Right: spectrum of gluons produced in AA for different energies (y ∝ lnE)

Particle production at high energy can be computed from QCD ,
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B Numerical solutions to JIMWLK & CYM eqs. by T. Lappi (2011)

B Left: unintegrated gluon distribution for different values of Y = ln(1/x)

B Right: spectrum of gluons produced in AA for different energies (y ∝ lnE)

Particle production at high energy can be computed from QCD ,
Hadron spectra can be modified by final state interactions ...

... but gross features and special correlations will survive !
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Boost invariance & longitudinal expansion

The classical field is invariant under a boost along the collision axis

B depends upon the proper time τ but not upon the space–time rapidity ηs

Introduction

Bookkeeping

Classical fields

● Diagrammatic expansion

● Retarded propagators

● Classical fields

● Gluon spectrum at LO

● Glasma

● Generating functional

Factorization

Summary

CERN

François Gelis – 2007 Lecture III / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 32

Boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒ A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : Ai(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ Ai and β remain independent of η at all times

τ ≡
√
t2 − z2 =

√
2x+x−

ηs ≡
1

2
ln
t+ z

t− z =
1

2
ln
x+

x−

Under a boost with velocity v0 :

τ is invariant

ηs −→ ηs + β with tanhβ = v0
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Boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒ A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : Ai(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ Ai and β remain independent of η at all times

Particle distribution dN/dη is independent of η
B particles move away from the interaction point at the speed of light

z ' vzt =⇒ ηs '
1

2
ln

1 + vz
1− vz

= − ln tan
θ

2
= η
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Boost invariance

■ Gauge condition : x+A− + x−A+ = 0

⇒ A±(x) = ± x± β(τ, η, ~x⊥)

η = const

τ = const

■ Initial values at τ = 0+ : Ai(0+, η, ~x⊥) and β(0+, η, ~x⊥) do
not depend on the rapidity η

⊲ Ai and β remain independent of η at all times

Free streaming leading to longitudinal expansion (Bjorken, 1983)

B particles separate from each other in the z direction

B radial expansion remains negligible until τ ∼ RA
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Multiplicity : rapidity dependence

RHIC (PHOBOS) data for dNch/dη as a function of η
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Long–range rapidity correlations probe early times

Boost invariance leads to long–range correlations in rapidity

Such correlations can be measured in the final state and traced back
to the early stages

Indeed, long–range correlations in rapidity are necessarily generated at
early stages, where particles propagating along very different angles
were still in causal contact with each other

detection

freeze out

latest correlation

A B

z 

t
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The Ridge in AA

A natural explanation for the ‘ridge’ :

di–hadron correlations long–ranged in ∆η & narrow in ∆φ

abundantly observed in AA collisions at RHIC and the LHC
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Figure 2: The steps involved in the extraction of the vn for 2-3 GeV fixed-pT correlation: a) the two-
dimensional correlation function (shown for |∆η| < 4.75 to reduce the fluctuations near the edge), b)
the one-dimensional ∆φ correlation function for 2 < |∆η| < 5 (re-binned into 100 bins), overlaid with
contributions from individual Fourier components as well as the sum, c) Fourier coefficient vn,n vs n,
and d) vn vs n. The bottom two panels show the full dependence of vn,n and vn on ∆η. The v1 is not
shown since it breaks the factorization from vn,n to vn of Eq. 13. The shaded bands in c)-f) indicate the
systematic uncertainties. The range 2 < paT, p

b
T < 3 GeV is chosen, since collective flow is expected to

be large in this range while the pair statistics are still high.
10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality
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C(∆φ,∆η) ≡ dNpair

d2p1⊥dη1d2p2⊥dη2
− dN

d2p1⊥dη1

dN

d2p2⊥dη2
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The Ridge in AA

A natural explanation for the ‘ridge’ :

long–range correlations in ∆η : boost invariance at early times

collimation in ∆φ can be explained by radial flow
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10

Integrate the data within slices of ∆η, perform a Fourier transform per
slice, then present vn as functions of ∆η, p⊥ and in bins of centrality
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C(∆φ,∆η) ≡ dNpair

d2p1⊥dη1d2p2⊥dη2
− dN

d2p1⊥dη1

dN

d2p2⊥dη2
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Glasma

Right after the collision, the chromo-electric and chromo-magnetic
fields are purely longitudinal

Flux tubes which extend between the recessing nuclei
‘glasma’ (from ‘glass’ + ‘plasma’) (McLerran and Lappi, 06)

At time τ ∼ 1/Qs, the transverse fields are regenerated
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From flux tubes to particles

At time τ ∼ 1/Qs, the glasma flux tubes break into particles (gluons)

Gluons emitted from the same flux tube are correlated with each other

François Gelis

2-hadron correlations

Early stages
Gluon saturation

Color Glass Condensate

Factorization

Ridge in the CGC
Color flux tubes

Ridge in Au-Au collisions

Ridge in p-p collisions

Summary

20

2-hadron correlations at RHIC

Dumitru, FG, McLerran, Venugopalan (2008)
Dusling, Fernandez-Fraile, Venugopalan (2009)
Dusling, FG, Lappi, Venugopalan (2009)

• η-independent fields lead to long range correlations :

R

Q
S
-1

• Particles emitted by different flux tubes are not correlated
⊲ (RQs)

−2 sets the strength of the correlation
correlation length in the transverse plane: ∆r⊥ ∼ 1/Qs

correlation length in rapidity : ∆η ∼ 1/αs

to start with, this correlation is isotropic in ∆Φ
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From flux tubes to particles

At time τ ∼ 1/Qs, the glasma flux tubes break into particles (gluons)

Gluons emitted from the same flux tube are correlated with each other

François Gelis

2-hadron correlations

Early stages
Gluon saturation

Color Glass Condensate

Factorization

Ridge in the CGC
Color flux tubes

Ridge in Au-Au collisions

Ridge in p-p collisions

Summary

20

2-hadron correlations at RHIC

Dumitru, FG, McLerran, Venugopalan (2008)
Dusling, Fernandez-Fraile, Venugopalan (2009)
Dusling, FG, Lappi, Venugopalan (2009)

• η-independent fields lead to long range correlations :

vr

• Particles emitted by different flux tubes are not correlated
⊲ (RQs)

−2 sets the strength of the correlation

• At early times, the correlation is flat in ∆ϕ
A collimation in ∆ϕ is produced later by radial flow

correlation length in the transverse plane: ∆r⊥ ∼ 1/Qs

correlation length in rapidity : ∆η ∼ 1/αs

in presence of radial flow, there is a bias leading to collimation in ∆Φ

B more particles along the radial velocity vr than perpendicular to it
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The Ridge in pp and pA

LHC : quite surprisingly, a ridge is also observed in p+p and p+A
events with unusually high multiplicity
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What is the origin of the azimuthal collimation ?

Can flow develop in such small systems (∼ 1 fm) ?

This might reflect the momentum correlations at early times (glasma)
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The thermalization puzzle

Strong experimental evidence (RHIC, LHC) in favor of an intermediate
phase of quark–gluon plasma in ‘local thermal equilibrium’

the parton distribution is isotropic in momentum space and slowly
varying in space and time; e.g.

n(t,x,p) =
1

eEp/T ∓ 1
where T = T (t,x) is slowly varying

Strongest evidence in that sense: the great success of nearly ideal
hydrodynamics in describing collective phenomena like elliptic flow

requires small thermalization time: τ0 . 1 fm ∼ 10−23 secs

This is very puzzling though

the early distribution is highly anisotropic (‘glasma flux tubes’)
to equilibrate, particles need to efficiently exchange 4–momentum
difficult to achieve for an expanding, weakly-coupled, system
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The thermalization puzzle (2)

Just after the collision, the partonic matter is highly anisotropic
Gluon production

Glasma instabilities

Resummation

Thermalization ?

● Numerical results

● Longitudinal expansion

● Anomalous transport

Link to Weibel instabilities

Summary

CERN

François Gelis – 2007 Lecture IV / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 33

Longitudinal expansion

■ If nothing else happened, the distribution of produced
particles would quickly become very anisotropic :

⊲ if particles fly freely, only one longitudinal velocity can exist
at a given η : vz = tanh (η)

⊲ the longitudinal expansion of the system is the main
obstacle to local isotropy

the glasma flux tubes have ‘negative longitudinal pressure’ :
they oppose to expansion (like a string of rubber)

Tµνeq =




ε 0 0 0
0 ε/3 0 0
0 0 ε/3 0
0 0 0 ε/3


 Tµνinitial =




ε 0 0 0
0 ε 0 0
0 0 ε 0
0 0 0 −ε




in equilibrium: PT = PL = ε/3 ; in the early glasma: PT = ε = −PL
The original anisotropy can be amplified by the longitudinal expansion
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Thermalization in perturbation theory

Particles can exchange energy and momentum through collisions.

Weak coupling: the dominant mechanism is 2 → 2 elastic scattering

Cross–section (σ) scales like |amplitude|2, hence like g4 ∼ α2
s

Mean free path (`) = average distance between successive collisions

` ∼ 1

density × σ ∝
1

α2
s

Typical equilibration time: τeq ∼ `/v ∝ 1/α2
s

Weakly coupled systems have large equilibration times ! /
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Thermalization in perturbation theory

Particles can exchange energy and momentum through collisions.

Weak coupling: the dominant mechanism is 2 → 2 elastic scattering

Cross–section (σ) scales like |amplitude|2, hence like g4 ∼ α2
s

Mean free path (`) = average distance between successive collisions

` ∼ 1

density × σ ∝
1

α2
s

Typical equilibration time: τeq ∼ `/v ∝ 1/α2
s

A compelling argument in favor of strong coupling and AdS/CFT
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The role of the strong fields

Heisenberg’s uncertainty principle requires

mean free path ` & de Broglie wavelength λ ∼ 1

p

In general, weakly interacting systems have ` � λ

weakly coupled QGP, temperature T : λ ∼ 1/T while ` ∼ 1/[α2
sT ]

However, the situation can change for a particle interacting with a
strong electric, or magnetic, field, as in the glasma

domain of size Q−1s where the (chromo) magnetic field is |B| ∼ Q2
s/g

Lorentz force :
dp

dt
= gv ×B =⇒ θ̇ ∼ gB

p
∼ Qs

time spent in the domain τ ∼ Q−1s =⇒ ∆θ ∼ O(1)

Gluon production

Glasma instabilities

Resummation

Thermalization ?

● Numerical results

● Longitudinal expansion

● Anomalous transport

Link to Weibel instabilities

Summary

CERN

François Gelis – 2007 Lecture IV / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 36

Anomalous transport

Asakawa, Bass, Muller (2006)

■ Assume that αs =
g2

4π
≪ 1

■ Consider a domain of size Q−1
s , in which the magnetic field is

uniform and large, of order B ∼ Q2
s/g

■ Let a particle of energy E ∼ Qs go through this domain.
The Lorenz force deflects its trajectory by an angle of order
unity :

d~p

dt
= g ~v × ~B ⇒ θ̇ =

gB

E
∼ Qs

time spent in the domain : δτ ∼ Q−1
s

B

Mean free path ` ∼ Q−1s ∼ 1/p : as low as permitted by Heisenberg
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The role of the strong fields

Heisenberg’s uncertainty principle requires

mean free path ` & de Broglie wavelength λ ∼ 1

p

In general, weakly interacting systems have ` � λ

weakly coupled QGP, temperature T : λ ∼ 1/T while ` ∼ 1/[α2
sT ]

However, the situation can change for a particle interacting with a
strong electric, or magnetic, field, as in the glasma

domain of size Q−1s where the (chromo) magnetic field is |B| ∼ Q2
s/g

Lorentz force :
dp

dt
= gv ×B =⇒ θ̇ ∼ gB

p
∼ Qs

time spent in the domain τ ∼ Q−1s =⇒ ∆θ ∼ O(1)

Gluon production

Glasma instabilities

Resummation

Thermalization ?

● Numerical results

● Longitudinal expansion

● Anomalous transport

Link to Weibel instabilities

Summary

CERN

François Gelis – 2007 Lecture IV / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 36

Anomalous transport

Asakawa, Bass, Muller (2006)

■ Assume that αs =
g2

4π
≪ 1

■ Consider a domain of size Q−1
s , in which the magnetic field is

uniform and large, of order B ∼ Q2
s/g

■ Let a particle of energy E ∼ Qs go through this domain.
The Lorenz force deflects its trajectory by an angle of order
unity :

d~p

dt
= g ~v × ~B ⇒ θ̇ =

gB

E
∼ Qs

time spent in the domain : δτ ∼ Q−1
s

B

Short mean free path =⇒ rapid thermalization !
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Thermalization at weak coupling & strong fields
(Epelbaum and Gelis, 2013)

Numerical solution to classical Yang–Mills eq. confirms the anisotropy
THE COLOR GLASS CONDENSATE [MCLERRAN, VENUGOPALAN (1993)]

Strong anisotropy at early time
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µτ
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τ PT

THOMAS EPELBAUM The onset of hydrodynamical flow in high energy heavy ion collisions 4 / 15

the saturation momentum Qs = g2µ sets the scale

τε = τ
(
2PT + PL) ≈ const. (longitudinal expansion)

τPL starts by being negative, then it becomes positive, but it remains
much smaller than τPT
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Thermalization at weak coupling & strong fields
(Epelbaum and Gelis, 2013)

However, this (boost–invariant) classical solution is unstable under
(rapidity–dependent) quantum fluctuations.

The fluctuations can be added to the initial conditionsNUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 8 10−4 (g = 0.1)

-1
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1/3

1/2
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1

Qs τ

τ   [fm/c]

0.01                          0.1

10.0 20.0 30.0 40.0

2 3 4

  

PT / ε

PL / ε

LO

THOMAS EPELBAUM The onset of hydrodynamical flow in high energy heavy ion collisions 12 / 15for very small g = 0.1, the solution preserves boost invariance, as at LO
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Thermalization at weak coupling & strong fields
(Epelbaum and Gelis, 2013)

However, this (boost–invariant) classical solution is unstable under
(rapidity–dependent) quantum fluctuations.

The fluctuations can be added to the initial conditionsNUMERICAL RESULTS [TE,GELIS 1307:2214]

αs = 2 10−2 (g = 0.5)
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THOMAS EPELBAUM The onset of hydrodynamical flow in high energy heavy ion collisions 13 / 15for g & 0.5, it approaches isotropy: PL/PT ' 0.7 ,
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Small η/s at weak coupling but strong fields

viscosity
entropy density

∼ mean free path
de Broglie wavelength

& ~

Infinitely strong coupling (AdS/CFT) : η/s = 1/4π
Gluon production

Glasma instabilities

Resummation

Thermalization ?

● Numerical results

● Longitudinal expansion

● Anomalous transport

Link to Weibel instabilities

Summary

CERN

François Gelis – 2007 Lecture IV / IV – Hadronic collisions at the LHC and QCD at high density, Les Houches, March-April 2008 - p. 37

Anomalous transport

■ Consider now a region filled with such domains, with random
orientations for the magnetic field in each domain

⊲ In such a medium, the mean free path of a particle of
energy Qs is of order Q−1

s , i.e. as low as permitted by the
uncertainty principle ⊲ fast thermalization?

η

s
∼ `

λ
∼ O(1)

(in units of ~)

Glasma : strong classical Yang–Mills fields at weak coupling
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Quark–Gluon Plasma

Introduction Hadron spectrum Nonvanishing temperature Summary

Reality: smooth analytic transition (cross-over)

Z. Fodor Recent Progress in Lattice QCD
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Confinement

The quark–antiquark potential increases linearly with the distance.

Quarks (and gluons) are confined into colorless hadrons
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Quark–antiquark potential at finite T

With increasing the temperature T , the potential flattens out at
shorter and shorter distances

-400

-200

0

200

400

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

U1(r,T) [MeV]

r [fm]

1.95Tc2.60Tc4.50Tc7.50Tc

This leads to a ‘phase transition’ at some ‘critical temperature’ Tc :
from Hadron Gas to a Quark–Gluon Plasma (QGP)
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Debye screening

QGP : a system of quarks and gluons which got free of confinement

How is that possible ???

Length scales in the QGP

Long distance effective theories

Collective phenomena

● Dressed propagator

● Quasi-particles

● Debye screening

● Landau damping

Anisotropic plasmas

CERN

François Gelis – 2007 Lecture II / III – 2nd Rio-Saclay meeting, CBPF, Rio de Janeiro, September 2007 - p. 32/46

Debye screening

■ A test charge polarizes the particles of the plasma in its
vicinity, in order to screen its charge :

V(r) = 
exp( - mdebye r)

r
r

■ The Coulomb potential of the test charge decreases
exponentially at large distance. The effective interaction
range is :

ℓ ∼ 1/mdebye ∼ 1/gT

■ Note : static magnetic fields are not screened by this
mechanism (they are screened over length-scales
ℓmag ∼ 1/g2T )

In a dense medium, color charges are screened by their neighbors

The interaction potential decreases exponentially beyond the Debye
radius RDebye = 1/mDebye

Hadrons whose sizes are larger than RDebye cannot bind anymore
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Deconfinement phase transition

Individual
nucleons plasma

Quark gluon

Density

When the nucleon density increases, they overlap, enabling quarks and
gluons to hop freely from a nucleon to its neighbors

B RDebye becomes smaller than the typical hadron radius Rh ∼ 1 fm

The hadrons melt into quarks and gluons

New Trends in High-Energy Physics From CGC to QGP – III Edmond Iancu 28 / 44



Quark–Gluon Plasma

Lattice calculations of the pressure in QCD at finite T

  0
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2 flavour
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Rapid increase of the pressure

around T ' 270 MeV with gluons only (‘pure gauge’)

around T ' 150 to 180 MeV with light quarks
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Quark–Gluon Plasma

Lattice calculations of the pressure in QCD at finite T

  0
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  2

  3

  4

  5
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T [MeV] 

p/T4 pSB/T4

3 flavour
2+1 flavour

2 flavour
pure gauge

επ = dπ

∫
d3p

(2π)3
Ep

eEp/T − 1

dπ = 3, Ep =
√
p2 +m2

π

The expected rise in the number of active degrees of freedom due to
the liberation of quarks and gluons

at T < Tc : 3 light mesons (π0, π±)

at T > Tc : 52 d.o.f. (gluons: 8× 2 = 16; quarks: 3× 3× 2× 2 = 36)
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Quark–Gluon Plasma

Lattice calculations of the pressure in QCD at finite T

  0

  1

  2

  3

  4

  5

100 200 300 400 500 600

T [MeV] 

p/T4 pSB/T4

3 flavour
2+1 flavour

2 flavour
pure gauge

εg = dg

∫
d3p

(2π)3
p

e p/T − 1

εq = dq

∫
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The expected rise in the number of active degrees of freedom due to
the liberation of quarks and gluons

at T < Tc : 3 light mesons (π0, π±)

at T > Tc : 52 d.o.f. (gluons: 8× 2 = 16; quarks: 3× 3× 2× 2 = 36)
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Possible first–order scenario with critical bubbles
Introduction Hadron spectrum Nonvanishing temperature Summary

Possible first order scenario with critical bubbles

Z. Fodor Recent Progress in Lattice QCD

If the transition was first–order, it would go through a mixed phase
containing a mixture of hadronic and QGP phases
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Possible first–order scenario with critical bubbles
Introduction Hadron spectrum Nonvanishing temperature Summary

Possible first order scenario with critical bubbles

Z. Fodor Recent Progress in Lattice QCD

This would be the case if the 3 ‘active’ quarks (u, s, d) were either
massless or infinitely massive (‘pure gauge’)
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A cross–over

This is not the case for the physical quark masses (2 light + 1 massive)

Introduction Hadron spectrum Nonvanishing temperature Summary

Reality: smooth analytic transition (cross-over)

Z. Fodor Recent Progress in Lattice QCD

The actual scenario is a ‘cross–over’ (no discontinuity)
the Wuppertal–Budapest lattice group, Nature, 443 (2006) 675)
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QCD thermodynamics: lattice

Transition temperature Equation of state Curvature on µ–T Summary

Pressure and energy density

ε normalized to the Stefan-Boltzmann limit: ε(T→∞)=15.7
at 1000 MeV still 20% difference to the Stefan-Boltzmann value

essentially perfect scaling, lines/points are lying on top of each other

Z. Fodor Tc , EoS and the curvature of the phase diagram from lattice QCD (Wuppertal-Budapest results)

With increasing temperature, the coupling g(T ) decreases, so the
exact result approaches towards the Stefan–Boltzmann limit

PSB =
π2

90

{
2(N2

c − 1) +
7

2
NcNf

}
T 4

For T & 2.5Tc, P (T )− PSB(T ) is about 20%

... is this small or large ?

Can one understand this difference in perturbation theory ?
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Perturbation theory for the pressure

P =
T

V
lnZ , Z ≡

∑

n

e−βEn = Tr e−βH (partition function)

Zero order (g → 0) : one-loop graphs

Order g2 ∼ αs : two-loop graphs

Order g3 ∼ α3/2
s : ring diagrams

Infinitely many diagrams formally starting at O(g4) but which
contribute already at O(g3) : ‘plasmon effect’ (see below)
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Perturbation theory shows no convergence

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

By itself, the O(g2) seems to do a pretty good job. However...

Successive perturbative approximations — O(g2), O(g3), O(g4),
O(g5) — jump up and down, without any sign of convergence.

Increasingly larger renormalization scale uncertainties (µ→ 4µ)
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Perturbation theory shows no convergence

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

1.5 2 2.5 3 3.5 4 4.5 5

0.6

0.8

1

1.2

1.4

Is this a non-perturbative effect inherent to QCD ?
An indication of strong coupling ?

A similar problem appears for any field theory at finite temperature,
including weakly coupled QED, or scalar φ4 theory !

At finite T , perturbation theory gets complicated by medium effects
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Recall : Debye screeningLength scales in the QGP

Long distance effective theories

Collective phenomena

● Dressed propagator

● Quasi-particles

● Debye screening

● Landau damping

Anisotropic plasmas

CERN

François Gelis – 2007 Lecture II / III – 2nd Rio-Saclay meeting, CBPF, Rio de Janeiro, September 2007 - p. 32/46

Debye screening

■ A test charge polarizes the particles of the plasma in its
vicinity, in order to screen its charge :

V(r) = 
exp( - mdebye r)

r
r

■ The Coulomb potential of the test charge decreases
exponentially at large distance. The effective interaction
range is :

ℓ ∼ 1/mdebye ∼ 1/gT

■ Note : static magnetic fields are not screened by this
mechanism (they are screened over length-scales
ℓmag ∼ 1/g2T )

Thermal effect associated with dressing the propagator: mDebye ∼ gT

q
_

q
k ~ gT

p ~ T p ~ T

The electric gluon acquires a mass which is ‘non–perturbative’ at ‘soft’
momenta k ∼ gT :

G00(k) =
1

k2 +m2
D︸ ︷︷ ︸

fine !

=
1

k2

[
1 − m2

D

k2
+

(
m2

D

k2

)2

· · ·
]

︸ ︷︷ ︸
not fine !
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Ring diagrams

The sum of the ring diagrams reconstructs the dressed propagator :

The Bose-Einstein thermal distribution is divergent as k → 0

nB(k) =
1

ek/T − 1
' T

k
∼ 1

g
when k ∼ gT

B large occupation numbers for the soft thermal gluons

This divergence is cut off by Debye screening at k ∼ gT , but this
results in an enhancement ∼ 1/g

The resummation of mD =⇒ odd powers in g in perturbation theory

An expansion in powers of g and not αs =⇒ lack of convergence !

αs = g2/4π = 0.2÷ 0.3 =⇒ g ' 1.5÷ 2
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Hard Thermal Loops

In a gauge theory, gauge symmetry requires (via Ward identities) the
generalization of the Debye mass to generic n–point amplitudes:
‘Hard Thermal Loops’ (Braaten and Pisarski, 1990; Blaizot, E. I., 1992)

k  ~ gTn

p ~ T

n
3

2
1

gT gT

T

T

HTL’s : one loop diagrams with internal momenta p ∼ O(T ) (‘hard’)
and external momenta ki ∼ O(gT ) (‘soft’)

Physical interpretation: collective phenomena in the QGP

Genuinely leading order effects that must be resummed to all orders,
via reorganizations of the perturbative expansion
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HTL–resummed entropy
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‘2-particle-irreducible’ resummation (HTL–dressed propagators)
(J.-P. Blaizot, A. Rebhan, E. I., 2000)

Physical picture: weakly coupled quasiparticles.

Good agreement with the lattice data (Bielefeld) for T & 2.5Tc.
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HTL–resummed pressure

HTL–resummed perturbation theory to 3 loop order
(Andersen, Leganger, Strickland, Nan Su, 2011)

When properly organized, perturbation theory is remarkably successful
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Quarkonia melting

Recall : a hadron whose size is larger than the Debye radius
RD = 1/mD cannot survive in the plasma

Quarkonia : bound states of heavy quarks (charm c or bottom b)
B small size R ∼ 1/mQ =⇒ can survive up to higher temperatures

Two families (including excited states) :
B cc̄ (charmonium, mc = 1.3 GeV) : J/ψ(1S), ψ(2S), χc(1P )

B bb̄ (bottomium, mb = 4.2 GeV) : Υ(1S), Υ(2S), Υ(3S)

amocsy@pratt.edu                         

The Quarkonium Story

V(r)
Confined

Deconfined

r

T 1/〈r〉 

ϒ(1S)

J/ψ(1S)

χc(1P)

Υ’(2S)

Matsui, Satz, PLB 178 (1986) 416 Mócsy, EPJC 61 (2009) 705

Sequential suppression :
B excited states are larger and melt
before the low energy ones

B bottomium family melts after the charmonium one

Quarkonia melting acts as a thermometer !
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Υ suppression at the LHC (CMS)
The Υ family is better suited since less subjected to ambiguities
B no recombination since less bb̄ pairs than cc̄

(at LHC : ∼ 100 cc̄ pairs in central Pb–Pb collisions =⇒ recombination)

François Gelis

53

The most “Textbook-Like” plot

François Gelis Theory @ HP 2013 53/57 Stellenbosch, November 2013

Very clean successive suppression pattern for the Υ’s
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Recall: Multiplicity : energy dependence

Particle multiplicity dN/dη ∝ Q2
s(A) ∼ sλs/2
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Slight difference between energy growth in pp and AA
(see Levin, Rezaeian, ’11)
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Multiplicity in HIC at the LHC 6

multiplicity is found to be very similar for
√

sNN = 2.76 TeV and
√

sNN = 0.2 TeV.

Fig. 3: Comparison of (dNch/dη)/
(
〈Npart〉/2

)
with model calculations for Pb–Pb at

√
sNN = 2.76 TeV. Uncer-

tainties in the data are shown as in Fig. 2.

Theoretical descriptions of particle production in nuclear collisions fall into two broad categories: two-
component models combining perturbative QCD processes (e.g. jets and mini-jets) with soft interactions,
and saturation models with various parametrizations for the energy and centrality dependence of the
saturation scale. In Fig. 3 we compare the measured (dNch/dη)/

(
〈Npart〉/2

)
with model predictions. A

calculation based on the two-component Dual Parton Model (DPMJET [10], with string fusion) exhibits
a stronger rise with centrality than observed. The two-component Hijing 2.0 model [25], which has been
tuned [11]1 to high-energy pp [19, 23] and central Pb–Pb data [2], reasonably describes the data. This
model includes a strong impact parameter dependent gluon shadowing which limits the rise of particle
production with centrality. The remaining models show a weak dependence of multiplicity on centrality.
They are all different implementations of the saturation picture, where the number of soft gluons available
for scattering and particle production is reduced by nonlinear interactions and parton recombination. A
geometrical scaling model with a strong dependence of the saturation scale on nuclear mass and collision
energy [12] predicts a rather weak variation with centrality. The centrality dependence is well reproduced
by saturation models [13] and [14]1, although the former overpredicts the magnitude.

In summary, the measurement of the centrality dependence of the charged-particle multiplicity density at
mid-rapidity in Pb–Pb collisions at

√
sNN = 2.76 TeV has been presented. The charged-particle density

normalized per participating nucleon pair increases by about a factor 2 from peripheral (70–80%) to
central (0–5%) collisions. The dependence of the multiplicity on centrality is strikingly similar for the
data at

√
sNN = 2.76 TeV and

√
sNN = 0.2 TeV. Theoretical descriptions that include a taming of the

multiplicity evolution with centrality are favoured by the data.
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1Published after the most central dNch/dη value [2] was known.
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FIG. 3. Charged particle pseudo-rapidity density per partic-
ipant pair for central nucleus–nucleus [16–24] and non-single
diffractive pp/pp collisions [25–31], as a function of

√
sNN.

The energy dependence can be described by s0.15
NN for nucleus–

nucleus, and s0.11
NN for pp/ppcollisions.

ity variables (SPD hits, or combined use of the ZDC and
VZERO signals).

We measure a density of primary charged particles
at mid-rapidity dNch/dη = 1584 ± 4 (stat.) ± 76
(sys.). Normalizing per participant pair, we obtain
dNch/dη/(0.5 〈Npart〉) = 8.3 ± 0.4 (sys.) with negligi-
ble statistical error. In Fig. 3, this value is compared
to the measurements for Au–Au and Pb–Pb, and non-
single diffractive (NSD) pp and pp collisions over a wide
range of collision energies [16–31]. The energy depen-
dence can be described by s0.11

NN for pp and pp, and
by s0.15

NN for nucleus–nucleus collisions. A significant in-
crease, by a factor 2.2, in the pseudo-rapidity density is
observed at

√
sNN = 2.76 TeV for Pb–Pb compared to√

sNN = 0.2 TeV for Au–Au. The average multiplicity
per participant pair for our centrality selection is found
to be a factor 1.9 higher than that for pp and pp collisions
at similar energies.

Figure 4 compares the measured pseudo-rapidity den-
sity to model calculations that describe RHIC measure-
ments at

√
sNN = 0.2 TeV, and for which predictions at√

sNN = 2.76 TeV are available. Empirical extrapolation
from lower energy data [4] significantly underpredicts the
measurement. Perturbative QCD-inspired Monte Carlo
event generators, based on the HIJING model tuned to
7 TeV pp data without jet quenching [5] or on the Dual
Parton Model [6], are consistent with the measurement.
Models based on initial-state gluon density saturation
have a range of predictions depending on the specific im-
plementation [7–11], and exhibit a varying level of agree-
ment with the measurement. The prediction of a hybrid
model based on hydrodynamics and saturation of final-
state phase space of scattered partons [12] is close to
the measurement. A hydrodynamic model in which mul-

FIG. 4. Comparison of this measurement with model predic-
tions. Dashed lines group similar theoretical approaches.

tiplicity is scaled from p+p collisions overpredicts the
measurement [13], while a model incorporating scaling
based on Landau hydrodynamics underpredicts the mea-
surement [14]. Finally, a calculation based on modified
PYTHIA and hadronic rescattering [15] underpredicts
the measurement.

In summary, we have measured the charged-particle
pseudo-rapidity density at mid-rapidity in Pb–Pb colli-
sions at

√
sNN = 2.76 TeV, for the most central 5% frac-

tion of the hadronic cross section. We find dNch/dη =
1584 ± 4 (stat.) ± 76 (sys.), corresponding to 8.3 ±
0.4 (sys.) per participant pair. These values are signif-
icantly larger than those measured at RHIC, and indi-
cate a stronger energy dependence than measured in pp
collisions. The result presented in this Letter provides
an essential constraint for models describing high energy
nucleus–nucleus collisions.
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Centrality dependence
Lessons from data
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√
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0.3 × f(Npart)

Different models reproduce data “well” (?)

5

Excellent fit by the CGC approach

All the models include some form of saturation
B HIJING : energy dependent low–pT cutoff
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The geometry of a HIC

7

Geometry of a Heavy-Ion Collision

Number of participants (Npart): number of incoming nucleons 
(participants) in the overlap region
Number of binary collisions (Nbin or Ncoll): number of equivalent 
inelastic nucleon-nucleon collisions 

Reaction plane

x

z

y

Non-central 
collision

“peripheral” collision (b ~ bmax)
“central”  collision (b ~ 0)

Nbin ≥ Npart
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