From Colour Glass Condensate to Quark-Gluon Plasma

Edmond Iancu

Institut de Physique Théorique de Saclay

QCD thermodynamics: lattice

• With increasing temperature, the coupling g(T) decreases, so the exact result approaches towards the Stefan–Boltzmann limit

$$P_{SB} = \frac{\pi^2}{90} \left\{ 2(N_c^2 - 1) + \frac{7}{2} N_c N_f \right\} T^4$$

• For $T \gtrsim 2.5 T_c$, $P(T) - P_{SB}(T)$ is about 20%

... is this small or large ?

• Can one understand this difference in perturbation theory ?

Perturbation theory shows no convergence

• By itself, the $\mathcal{O}(g^2)$ seems to do a pretty good job. However...

• Successive perturbative approximations — $\mathcal{O}(g^2)$, $\mathcal{O}(g^3)$, $\mathcal{O}(g^4)$, $\mathcal{O}(g^5)$ — jump up and down, without any sign of convergence.

• Increasingly larger renormalization scale uncertainties $(\mu \rightarrow 4\mu)$

Perturbation theory shows no convergence

- Is this a non-perturbative effect inherent to QCD ?
 A signal of strong coupling ?
- A similar problem appears for any field theory at finite temperature, including QED and scalar ϕ^4 theory with small coupling
- At finite T, perturbation theory gets complicated by medium effects

Recall : Debye screening

• Thermal effect associated with dressing the propagator: $m_{\rm Debye} \sim gT$

• The Debye mass is not perturbative at soft momenta $k \sim gT$:

$$G_{00}(k) = \underbrace{\frac{1}{k^2 + m_{\rm D}^2}}_{\text{fine !}} = \underbrace{\frac{1}{k^2} \left[1 - \frac{m_{\rm D}^2}{k^2} + \left(\frac{m_{\rm D}^2}{k^2}\right)^2 \cdots \right]}_{\text{not fine !}}$$

Ring diagrams

• The Bose-Einstein thermal distribution is divergent as $k \rightarrow 0$

$$n_B(k) = rac{1}{\mathrm{e}^{k/T}-1} \simeq rac{T}{k} \sim rac{1}{g} \qquad ext{when} \quad k \sim gT$$

 \rhd large occupation numbers for the soft thermal gluons

- This divergence is cut off by Debye screening at $k\sim gT$, but this results in an enhancement $\sim 1/g$
- E.g.: the sum of the ring diagrams yields a term $\sim g^3 \sim lpha_s^{3/2}$

- The resummation of $m_D \Longrightarrow \operatorname{odd} \operatorname{powers} \operatorname{in} g$ in perturbation theory
- An expansion in powers of g and not $\alpha_s \Longrightarrow$ lack of convergence !

$$\alpha_s = g^2/4\pi = 0.2 \div 0.3 \implies g \simeq 1.5 \div 2$$

New Trends in High-Energy Physics

Hard Thermal Loops

• In a gauge theory, gauge symmetry requires (via Ward identities) the generalization of the Debye mass to generic *n*-point amplitudes:

'Hard Thermal Loops' (Braaten and Pisarski, 1990; Blaizot, E. I., 1992)

- HTL's : one loop diagrams with internal momenta $p \sim O(T)$ ('hard') and external momenta $k_i \sim O(gT)$ ('soft')
- Physical interpretation: collective phenomena in the QGP
- Genuinely leading order effects that must be resummed to all orders, via reorganizations of the perturbative expansion

New Trends in High-Energy Physics

HTL-resummed entropy

- '2-particle-irreducible' resummation (HTL-dressed propagators) (J.-P. Blaizot, A. Rebhan, E. I., 2000)
- Physical picture: weakly coupled quasiparticles.
- Good agreement with the lattice data (Bielefeld) for $T\gtrsim 2.5T_c$.

HTL-resummed pressure

- HTL-resummed perturbation theory to 3 loop order (Andersen, Leganger, Strickland, Nan Su, 2011)
- When properly organized, perturbation theory is remarkably successful

HTL-resummed pressure at 3 loop order

• Not an easy job though ! 🙂

Di-jet asymmetry & wave turbulence

Hard probes

• How the probe the ephemeral QGP phase at intermediate stages ?

• Hard $(E \gg T)$ partons, photons, leptons created at early times

• Interact with the surrounding medium on their way to the detectors

Nuclear modification factor

• Use p+p collisions as a benchmark for particle production

$$R_{\rm A+A} \equiv \frac{1}{A^2} \frac{{\rm d}N_{\rm A+A}/{\rm d}^2 p_\perp {\rm d}\eta}{{\rm d}N_{\rm p+p}/{\rm d}^2 p_\perp {\rm d}\eta}$$

• No suppression for photons, small suppression in peripheral collisions

Nuclear modification factor

• Use p+p collisions as a benchmark for particle production

$$R_{\rm A+A} \equiv \frac{1}{A^2} \frac{{\rm d}N_{\rm A+A}/{\rm d}^2 p_\perp {\rm d}\eta}{{\rm d}N_{\rm p+p}/{\rm d}^2 p_\perp {\rm d}\eta}$$

• Strong suppression $(R_{AA} \lesssim 0.2)$ in central collisions

Nuclear modification factor

• Use p+p collisions as a benchmark for particle production

$$R_{\rm A+A} \equiv \frac{1}{A^2} \frac{{\rm d}N_{\rm A+A}/{\rm d}^2 p_\perp {\rm d}\eta}{{\rm d}N_{\rm p+p}/{\rm d}^2 p_\perp {\rm d}\eta}$$

• Large energy loss via interactions in the medium

Jet quenching

• Hard partons are typically created in pairs which propagate back-to-back in the transverse plane

- 'Jet': 'leading particle' + 'products of fragmentation'
- *AA* collisions : jet propagation and fragmentation can be modified by the surrounding medium: 'jet quenching'

Di-jets in p+p collisions at the LHC

Di-hadron azimuthal correlations

 \bullet Distribution of pairs of particles w.r.t. the relative angle $\Delta\Phi$ in the transverse plane

- Di-hadron azimuthal correlations at RHIC:
 - p+p or d+Au : a peak at $\Delta \Phi = \pi$ $(p_1 + p_2 \simeq 0)$

Di-hadron azimuthal correlations

• Distribution of pairs of particles w.r.t. the relative angle $\Delta \Phi$ in the transverse plane

- Di-hadron azimuthal correlations at RHIC:
 - Au+Au : the away jet has disappeared !

• Collisions in the medium lead to transverse momentum broadening

Di-jet asymmetry (ATLAS)

Question: How many jets do you see in the event ?

- on none
- one
- it depends
- could you please remind me the definition of a jet ?

New Trends in High-Energy Physics

Di-jet asymmetry (ATLAS)

Question: How many jets do you see in the event ?

one

New Trends in High-Energy Physics

From CGC to QGP - IV

Edmond lancu 17 / 38

Di-jet asymmetry (ATLAS)

• Central Pb+Pb: 'mono-jet' events

• The secondary jet cannot be distinguished from the background: $E_{T1} \ge 100$ GeV, $E_{T2} > 25$ GeV

Di-jet asymmetry (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Detailed studies show that the 'missing energy' is carried by many soft ($p_\perp < 2$ GeV) hadrons propagating at large angles

 \rhd a surprising fragmentation pattern from the standard viewpoint of pQCD

Jet quenching in pQCD

- Can one understand such phenomena from first principles ?
- In perturbative QCD, they all find a common denominator: incoherent multiple scattering off the medium constituents

- random kicks provide transverse momentum broadening
- medium induced radiation leading to large energy loss
- large emission angles, especially for the softest emitted quanta
- coherence phenomena leading to enhanced jet fragmentation

New Trends in High-Energy Physics

Transverse momentum broadening (1)

• An energetic quark (or gluon) acquires a transverse momentum p_{\perp} via collisions in the medium, after propagating over a distance L

- Weakly coupled medium \Rightarrow quasi independent scattering centers
 - \triangleright successive collisions give random kicks
 - \triangleright Brownian motion in p_{\perp} : $\langle p_{\perp}^2 \rangle \simeq \hat{q} L$
- \hat{q} : the 'jet quenching parameter' (a medium transport coefficient)
 - \vartriangleright a fundamental quantity for what follows

New Trends in High-Energy Physics

Transverse momentum broadening (2)

• QGP at weak coupling : a simple estimate (kinetic theory)

$$\hat{q} \simeq \frac{\mu^2}{\ell}$$

- average (momentum)² transfer per scattering μ^2
- parton mean free path $\ell \, \sim \, 1/n\sigma$
- n : density of medium constituents; σ : elastic cross–section

Transverse momentum broadening (2)

• QGP at weak coupling : a simple estimate (kinetic theory)

$$\hat{q} \simeq \frac{\mu^2}{\ell} \sim \alpha_s^2 T^3 \sim 1 \text{ GeV}^2/\text{fm}$$

- ullet average (momentum) 2 transfer per scattering $\mu^2 \, \sim \, T^2$
- parton mean free path $\ell\,\sim\,1/n\sigma\,\sim\,1/\alpha_s^2 T$
- n : density of medium constituents; σ : elastic cross-section

Transverse momentum broadening (2)

• QGP at weak coupling : a simple estimate (kinetic theory)

$$\hat{q} \simeq \frac{\mu^2}{\ell} \sim \alpha_s^2 T^3 \sim 1 \text{ GeV}^2/\text{fm}$$

- average (momentum) 2 transfer per scattering $\mu^2 \, \sim \, T^2$
- parton mean free path $\ell\,\sim\,1/n\sigma\,\sim\,1/\alpha_s^2 T$
- The softer the particle, the stronger its deviation :

$$\theta(\omega) \simeq \frac{p_{\perp}}{\omega} \simeq \frac{\sqrt{\hat{q}L}}{\omega}$$

Medium-induced gluon radiation

Baier, Dokshitzer, Mueller, Peigné, Schiff, Zakharov (BDMPS-Z) \sim 1995

 Collisions with the plasma constituents provide acceleration (transverse momentum kicks) and thus allow for additional radiation

- Gluon missions can occur anywhere inside the medium (with size L) ... but they are not instantaneous : formation time τ_f
- The formation time determines the rate for emission

New Trends in High-Energy Physics

The formation time

- By the uncertainty principle, it takes some time to emit a gluon !
 b the gluon must lose quantum coherence with respect to its source
- $\bullet\,$ Gluon with energy ω and transverse momentum k_{\perp} :

 \triangleright the quark–gluon transverse separation b_{\perp} at the formation time τ_f must be larger than the gluon transverse wavelength λ_{\perp}

• So far, the medium did not play any role

In-medium formation time

- The gluon acquires a (momentum) $^2 \sim \hat{q}$ per unit time ...
- ... and hence a momentum $k_f^2 \simeq \hat{q} \, au_f$ during its formation.

$$au_f \simeq rac{\omega}{k_\perp^2} \quad \& \quad k_\perp^2 \simeq \hat{q} au_f \quad \Longrightarrow \quad au_f \simeq \sqrt{rac{\omega}{\hat{q}}}$$

- Maximal ω for this mechanism: $\tau_f \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$
- Minimal emission angle: $\theta_c \equiv \theta(\omega_c) \sim 1/\sqrt{\hat{q}L^3}$
- Some typical values: $L \simeq 5$ fm, $\omega_c \simeq 50$ GeV, $\theta_c \simeq 0.1$
- The relatively soft gluons with $\omega \ll \omega_c$ have
 - small formation times: $au_f(\omega) \ll L$
 - large emission angles : $\theta(\omega) \gg \theta_c$

In-medium formation time

- The gluon acquires a (momentum) $^2 \sim \hat{q}$ per unit time ...
- ... and hence a momentum $k_f^2 \simeq \hat{q} \, au_f$ during its formation.

$$au_f \simeq rac{\omega}{k_\perp^2} \quad \& \quad k_\perp^2 \simeq \hat{q} au_f \quad \Longrightarrow \quad au_f \simeq \sqrt{rac{\omega}{\hat{q}}}$$

- Maximal ω for this mechanism: $\tau_f \leq L \Rightarrow \omega \leq \omega_c \equiv \hat{q}L^2$
- Minimal emission angle: $heta_c \equiv heta(\omega_c) \sim 1/\sqrt{\hat{q}L^3}$
- Some typical values: $L \simeq 5$ fm, $\omega_c \simeq 50$ GeV, $\theta_c \simeq 0.1$
- The relatively soft gluons with $\omega \ll \omega_c$ have
 - small formation times: $au_f(\omega) \ll L$
 - large emission angles : $\theta(\omega) \gg \theta_c$
- Potentially relevant for the di-jet asymmetry

Emission probability

• Spectrum : Bremsstrahlung \times average number of emissions

$$\omega \frac{\mathrm{d}P}{\mathrm{d}\omega} \simeq \alpha_s \frac{L}{\tau_f(\omega)} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

- emission probability depends upon the energy ω of the emitted gluon LPM effect (from Landau, Pomeranchuk, Migdal, within QED)
- Energy loss by the 'leading particle' via a single emission :

$$\Delta E = \int^{\omega_c} \mathrm{d}\omega \,\,\omega \,\frac{\mathrm{d}P}{\mathrm{d}\omega} \,\,\sim \,\,\alpha_s \omega_c$$

- integral dominated by its upper limit $\omega = \omega_c$ (hard emission)
- rare event : probability of $\mathcal{O}(\alpha_s)$
- $\bullet\,$ small emission angle $\theta_c \Rightarrow$ the energy remains inside the jet
- important for the nuclear modification factor R_{AA}

Soft emissions at large angles

• Spectrum : Bremsstrahlung \times average number of emissions

$$\omega \frac{\mathrm{d}N}{\mathrm{d}\omega} \simeq \alpha_s \frac{L}{\tau_f(\omega)} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}} \qquad (\omega_c = \hat{q}L^2)$$

- Relatively soft emissions with $\omega \ll \omega_c$:
 - small formation times : $au_f \,\ll\, L$
 - quasi-deterministic : probability of ${\cal O}(1)$ for $~~\omega~\lesssim~lpha_s^2\omega_c$
 - a relatively smaller contribution to the energy loss : $\Delta E_s \sim \alpha_s^2 \omega_c$
 - ullet ... but this can be lost at very large angles : θ \gtrsim θ_c/α_s^2 \sim 0.5
- Control the energy loss at large angles \implies di–jet asymmetry \bigcirc
- When probability of O(1) ⇒ multiple branchings become important Casalderrey-Solana, E. I. '11; Blaizot, Dominguez, E.I., Mehtar-Tani '12

Multiple branchings

• Multiple 'primary' emissions with $\omega \lesssim \alpha_s^2 \omega_c$ by the leading particle

$$\omega \frac{\mathrm{d}P}{\mathrm{d}\omega} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}}$$

Each primary gluon develops its own gluon cascade

Multiple branchings

• Multiple 'primary' emissions with $\omega \lesssim \alpha_s^2 \omega_c$ by the leading particle

$$\omega \frac{\mathrm{d}P}{\mathrm{d}\omega} \simeq \alpha_s \sqrt{\frac{\omega_c}{\omega}}$$

Each primary gluon develops its own gluon cascade

Multiple branchings

• Multiple 'primary' emissions with $\omega \lesssim \alpha_s^2 \omega_c$ by the leading particle

Each primary gluon develops its own gluon cascade

- Their subsequent branchings are quasi-democratic
 - $\bullet\,$ the daughter gluons carry comparable energy fractions: $x\sim 1/2$

Quasi-democratic branchings

- Non-trivial ! Not true for bremsstrahlung in the vacuum !
- Bremsstrahlung in the vacuum : splittings are strongly asymmetric

$$dP \sim \alpha_s \frac{d\omega}{\omega} \sim \alpha_s \frac{dx}{x}$$
$$\Delta P \sim \alpha_s \int \frac{dx}{x} \sim \alpha_s \ln \frac{1}{x}$$

- probability of $\mathcal{O}(1)$ when $\alpha_s \ln(1/x) \sim 1 \Longrightarrow$ favors $x \ll 1$
- argument independent of the parent energy ω₀
 ▷ all that matters is the splitting fraction x
- 'soft singularity' (x
 ightarrow 0) of bremsstrahlung

Quasi-democratic branchings

• In-medium radiation : a consequence of the LPM effect

- ullet the rate also depends upon the parent gluon energy ω_0
- $\bullet\,$ probability of $\mathcal{O}(1)$ when $\omega_0\sim \alpha_s^2\omega_c$ for any value of x
- the phase space favors generic values of x: 'quasi-democratic'

Quasi-democratic branchings

• In-medium radiation : a consequence of the LPM effect

- ullet the rate also depends upon the parent gluon energy ω_0
- probability of $\mathcal{O}(1)$ when $\omega_0\sim \alpha_s^2\omega_c$ for any value of x
- the phase space favors generic values of x: 'quasi-democratic'
- A similar scenario at strong coupling (Y. Hatta, E.I., Al Mueller '08)
- ... but no other known example in a weakly coupled gauge theory

A typical gluon cascade

- The leading particle emits mostly soft gluons: $\omega \lesssim lpha^2 \omega_c$
- These primary gluons rapidly split into even softer ones.
- The primary gluons propagate along typical angles $\theta_s\simeq \theta_c/\alpha^2\sim 0.5$

• The final gluons ($\omega \sim T$) make even larger angles $heta_{
m th} > heta_s \gtrsim 1$

Wave turbulence

- Democratic branchings lead to turbulent energy flow (Richardson, '24; Kolmogorov, '41; Zakharov, '92)
- The energy flows from large x to small x without accumulating at any intermediate value of x

- ${\, \bullet \,}$ the cascade stops when $\omega \sim T$
- gluons with $\omega \sim T$ 'thermalize' (lose their energy towards the medium)
- since very soft, such gluons propagate at very large angles w.r.t. jet axis

Wave turbulence

- Democratic branchings lead to turbulent energy flow (Richardson, '24; Kolmogorov, '41; Zakharov, '92)
- The energy flows from large x to small x without accumulating at any intermediate value of x

• The prototype: Richardson cascade for breaking-up vortices

Compare to DGLAP cascade (jet in the vacuum)

- The asymmetric splittings amplify the number of gluons at small x
- Yet, the energy remains in the few partons with larger values of x
- In the DGLAP cascade, the energy remains at small angles

Compare to DGLAP cascade (jet in the vacuum)

- The asymmetric splittings amplify the number of gluons at small x
- Yet, the energy remains in the few partons with larger values of x
- Di-jet asymmetry demonstrates a turbulent cascade

J.-P. Blaizot, Iancu, Y. Mehtar-Tani (2013); Fister, Iancu (2014)

Di-jet asymmetry : $A_{\rm J}$ (CMS)

 Event fraction as a function of the di-jet energy imbalance in p+p (a) and Pb+Pb (b-f) collisions for different bins of centrality

$$A_{\rm J} = \frac{E_1 - E_2}{E_1 + E_2} \qquad (E_i \equiv p_{T,i} = \text{ jet energies})$$

• N.B. A pronounced asymmetry already in the p+p collisions !

Tri-jets in p+p collisions at the LHC

Di-jet asymmetry : $A_{\rm J}$ (CMS)

- Additional energy imbalance as compared to p+p : 20 to 30 GeV
- Considerably larger than the typical scale in the medium: the 'temperature' $T \sim 1~{\rm GeV}$ (average $p_{\perp})$

No missing energy ! (CMS, arXiv:1102.1957)

• ... but a pronounced difference in its distribution in bins of $\omega \equiv p_T$

- p_T^{\parallel} : projection of a hadron energy along the jet axis
- $p_T^{\parallel} < 0$: same hemisphere as the trigger jet
- $p_T^{\parallel} > 0$: same hemisphere as the away jet
- all hadrons with $p_T > 0.5~{\rm GeV}$ are measured

• Pb+Pb: excess of soft hadrons (≤ 2 GeV) in the 'away' hemisphere

These soft hadrons are found at large angles

• The energy imbalance for a jet with a wide opening : R = 0.8

- Di–jet asymmetry : $E_{
 m in}^{
 m T}$ > $E_{
 m in}^{
 m A}$
- No missing energy : $E_{\rm in}^{\rm T} + E_{\rm out}^{\rm T} = E_{\rm in}^{\rm A} + E_{\rm out}^{\rm A}$
- \bullet The energy lost at large angles, $E_{\rm out}^{\rm A}-E_{\rm out}^{\rm T}$...
 - ... is carried mostly by soft hadrons with $p_T < 2$ GeV

Instead of conclusions

• All that may look hopelessly complicated ... 🙁

Instead of conclusions

- All that may look hopelessly complicated ... 🙁
- ... but in reality it is JUST PLAIN QCD $\ \ \odot$

THANK YOU !

New Trends in High-Energy Physics