Jets: seeing quarks, gluons and more at the LHC

Grégory Soyez

IPhT, CEA Saclay

October 21-31, 2014

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October

- <u>Lecture 1</u>: Jets ~ QCD parton basic concepts
- Lecture 2: How close is a jet to a parton? Analytic estimates of perturbative and non-perturbative effects between a parton and a jet
- <u>Lecture 3</u>: *A jet can be something else too!* Boosted jets and jet substructure

Do you have any question?

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 2

FINALLY: A reason to love Mondays.

< □ > < 個 > < 匣 > < 匣 >

12

In the IR, QCD amplitudes are

- Finite
- Divergent (infinite)

In the IR, QCD amplitudes are

• Divergent (infinite)

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-3

In pQCD, well-defines observables should be

- Finite
- Divergent (infinite)

In pQCD, well-defines observables should be

Finite

Consequence

- Divergences in real emissions cancel against virtual corrections
- Observables should be infrared-and-collinear safe
- Observables should not be sensitive to coll. branchings and soft em.

A jet is a proxy to

- Leptons
- Quark and gluons
- Neutrinos

A jet is a proxy to

Quark and gluons

Physics idea

Because of the collinear divergence, "q/g" appear as collinear sprays of hadrons, ${\bf jets}$

Question 4

What jet algorithm is used at the LHC?

- k_t
- anti-*k*t
- the ATLASCone and the CMSIterativeCone
- SISCone

Question 4

What jet algorithm is used at the LHC?

• anti-k_t

The anti- k_t algorithm

• From all the objects, define the distances

$$d_{ij} = \min(p_{t,i}^{-2}, p_{t,j}^{-2})(\Delta y_{ij}^2 + \Delta \phi_{ij}^2), \qquad d_{iB} = p_{t,i}^{-2}R^2$$

 repeatedly find the minimal distance if d_{ij}: recombine i and j into k = i + j if d_{iB}: call i a jet

Is the anti- k_t algorithm IRC safe?

No

Is the anti- k_t algorithm IRC safe?

Yes

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014

Is the following statement correct? "For my analysis, I use jets reconstructed with the anti- k_t algorithm."

Yes	
No	

Is the following statement correct? "For my analysis, I use jets reconstructed with the anti- k_t algorithm."

No

The algorithm alone is not enough: one has to specify the parameters (here, R)

As Bruno said, people get inventive: *"we measure the number of jets associated with the Higgs."* Is that IRC-safe?

- Yes
- No
- It depends

As Bruno said, people get inventive: *"we measure the number of jets associated with the Higgs."* Is that IRC-safe?

• It depends

The "total" number of jets is not! But one imposes a p_t cut so things are fine (quote the cut!)

For IRC-safe observables, soft/collinear emissions are (otfen) giving

• 0

- constant correction
- logarithmic corrections
- power corrections

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014 12 / 53

For IRC-safe observables, soft/collinear emissions are (otfen) giving

- constant correction
- logarithmic corrections

Reminiscent of the $d\theta^2/\theta^2$ or dz/z emission rates

For IRC-safe observables, non-perturbative corrections are (usually) giving

• 0

- constant correction
- logarithmic corrections $(\log(Q/\Lambda_{\rm QCD}))$
- power corrections $((\Lambda_{\rm QCD}/Q)^k)$

For IRC-safe observables, non-perturbative corrections are (usually) giving

• power corrections $((\Lambda_{\rm QCD}/Q)^k)$

Mostly a cancellation of the "log" due to IRC safety

Do you also have collinear and soft emissions in QED?

- Yes
- No

Do you also have collinear and soft emissions in QED?

• Yes

Same $d\theta^2/\theta^2$ or dz/z divergences when emitting a photon from an electron!

Why do we have QCD (q/g) jets and no e^- /photon jet?

Why do we have QCD (q/g) jets and no e^- /photon jet?

- $\alpha_e \ll \alpha_s$
- In other words $\alpha_e \log(1/R)$ or $\alpha_e \log(1/z)$ only relevant at "unresolved" scales
- And no IR divergence in the coupling

Jet substructure

concept, importance, main ideas

Boosted jets

Object X decaying to hadrons

Boosted jets

Object X decaying to hadrons

If $p_t \gg m$, reconstructed as a single jet How to disentangle that from a QCD jet?

What jet do we have here?

What jet do we have here?

• a quark?

What jet do we have here?

- a quark?
- a gluon?

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

What jet do we have here?

- a quark?
- a gluon?
- a W/Z (or a Higgs)?
- a top quark?

18 / 53

Source: ATLAS boosted top candidate

Question 12

Can I just look at the jet mass?

- Yes
- No
Question 12

Can I just look at the jet mass?

No

I'll show you why later

Question 13

Does it make sense to speak about the "mass" of a jet?

- Yes
- No

Question 13

Does it make sense to speak about the "mass" of a jet? • Yes

Th: Of course! it's a "simple" 4-vector sum! Exp: a bit more complicated but fine (ask me or Murilo for details)

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014 20 / 53

Boosted jets

Many applications: (examples)

- 2-pronged decay: $W
 ightarrow q ar{q}, \ H
 ightarrow b ar{b}$
- 3-pronged decay: $t \rightarrow qqb$, $\tilde{\chi} \rightarrow qqq$
- busier combinations: $t\bar{t}H$
- new physics: e.g. R-parity violating $\chi \rightarrow qqq$, boosted tops in SUSY

Boosted jets

Many applications: (examples)

- 2-pronged decay: $W
 ightarrow q ar{q}, \ H
 ightarrow b ar{b}$
- 3-pronged decay: $t \rightarrow qqb$, $\tilde{\chi} \rightarrow qqq$
- busier combinations: $t\bar{t}H$
- new physics: e.g. R-parity violating $\chi \rightarrow qqq$, boosted tops in SUSY

Increasingly important:

- Increasing LHC energy
- Increasing bounds
- More-and-more discussions about yet higher-energy colliders

More and more boosted jets Needs to be under control

A lot of activity since 2008

Jet substructure as a new Higgs search channel at the LHC

22 / 53

Jon Butterworth, Adam Davison, Mathieu Rubin, Gavin Salam, 0802.2470

Find N = 2, 3 hard cores in a jet

Question 14

Why does that work? (say we look at W v. q jets)

- Because there is no gluon in a W jet
- Because the splitting $W o q ar q \,
 eq q o q g$
- Because W and q do not have the same charge
- Becasue W and q do not have the same colour

Find N = 2, 3 hard cores in a jet

Question 14

Why does that work? (say we look at W v. q jets)

• Because the splitting $W o q ar q \,
eq q o q g$

$P(z) \propto 1/z \Rightarrow$ dominated by soft emissions \Rightarrow QCD jets mostly have a "single" hard core

Constrain radiation patterns in the jet

Question 15

Why does that work? (say we look at W v. q jets)

- Because there is no gluon in a W jet
- Because the splitting $W o q ar q \,
 eq q o q g$
- Because W and q do not have the same charge
- Becasue W and q do not have the same colour

Constrain radiation patterns in the jet

Question 15

Why does that work? (say we look at W v. q jets)

• Becasue W and q do not have the same colour

Radiation is different for colourless, quarks or gluons Radiation patterns is different for $W \rightarrow q\bar{q}$ or $g \rightarrow q\bar{q}$

Many tools

• Two major ideas:

• Find N = 2, 3 hard cores in a jet

QCD jets typically have a single core + soft radiation

Onstrain the radiation pattern in jets

q/g jets radiate soft gluons differently from, e.g. W o qar q

Many tools

 Two major ideas:
 Image: Find N = 2, 3 hard cores in a jet QCD jets typically have a single core + soft radiation constrain the radiation pattern in jets q/g jets radiate soft gluons differently from, e.g. W → qq̄

• Many approaches:

- uncluster the jet into subjets/investigate the clustering history
- use jet shapes (functions of jet constituents),...

Many tools

Two major ideas:
Image: Find N = 2, 3 hard cores in a jet QCD jets typically have a single core + soft radiation constrain the radiation pattern in jets q/g jets radiate soft gluons differently from, e.g. W → qq̄

• Many approaches:

- uncluster the jet into subjets/investigate the clustering history
 use jet shapes (functions of jet constituents),...
- Many tools: mass drop; filtering, trimming, pruning; soft drop; N-subjettiness, planar flow, energy correlations, pull; template methods; Johns Hopkins top tagger, HEPTopTagger;

Generic status

current status

methods are

- tested on Monte-Carlo simulations
- validated on LHC data (QCD backgrounds)

disclaimer

I cannot realistically cover everything \Rightarrow I will just show a few examples

Jet substructure

A deeper look at a few tools

Fat Jets

Fat Jets

One usually work with large-R jets ($R \sim 0.8 - 1.5$) \Rightarrow large sensitivity to UE (and pileup)

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014 28 / 53

Grooming

Grooming

One usually work with large-R jets $(R \sim 0.8 - 1.5)$

- \Rightarrow large sensitivity to UE (and pileup)
- \Rightarrow "grooming" techniques reduce sensitivity to soft-and-large-angle

Grooming

Grooming

One usually work with large-R jets $(R \sim 0.8 - 1.5)$

- \Rightarrow large sensitivity to UE (and pileup)
- \Rightarrow "grooming" techniques reduce sensitivity to soft-and-large-angle

Filtering/trimming

- re-cluster the jet with the k_t algorithm, $R = R_{\rm sub}$
- Filtering: keep the n_{filt} hardest subjets

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

• Trimming: keep subjets with $p_t > f_{trim} p_{t,jet}$ [D.Krohn, J.Thaler, L-T.Wang, 10]

Grooming

Grooming

- One usually work with large-R jets (R $\sim 0.8-1.5)$
 - \Rightarrow large sensitivity to UE (and pileup)
 - \Rightarrow "grooming" techniques reduce sensitivity to soft-and-large-angle

Filtering/trimming

- re-cluster the jet with the k_t algorithm, $R=R_{
 m sub}$
- Filtering: keep the n_{filt} hardest subjets

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

• Trimming: keep subjets with $p_t > f_{trim} p_{t,jet}$ [D.Krohn,J.Thaler,L-T.Wang,10]

pruning

- re-cluster the jet with the k_t algorithm [S.Ellis, C.Vermillion, J.Walsh, 2009]
- when recombining $j_1 + j_2 \rightarrow j$, if $\theta_{12} > R_{\text{prune}} = f_{\text{prune}} m/p_t$ and $\min(p_{t1}, p_{t2}) < z_{\text{prune}} p_t$, keep only the hardest of j_1 and j_2 .

Methods for finding hard cores

(modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- undo the last splitting $j \rightarrow j_1 + j_2$
- if max(p_{t1}, p_{t2}) > z_{cut}p_t, j₁ and j₂ are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08; M. Dasgupta, A. Fregoso, S. Marzani, G. Salam, 13]

Methods for finding hard cores

(modified) mass-drop tagger ((m)MDT)

- start with a jet clustered with Cambridge/Aachen
- undo the last splitting $j \rightarrow j_1 + j_2$
- if max(p_{t1}, p_{t2}) > z_{cut}p_t, j₁ and j₂ are the 2 hard cores otherwise, continue with the hardest subjet
- Original version also imposed a mass-drop: $\max(m_1, m_2) < \mu m$

[J. Buterworth, A. Davison, M. Rubin, G. Salam, 08; M. Dasgupta, A. Fregoso, S. Marzani, G. Salam, 13]

SoftDrop

Same de-clustering procedure as the mMDT but angular-dependent cut $\max(p_{t1}, p_{t2}) > z_{\rm cut} p_t (\theta_{12}/R)^{\beta}$

[A. Larkoski, S. Marzani, J. Thaler, GS, 14]

(I) < (I)

Start with the jets in an event

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014

This is what they look like with their area

Take the hardest, apply a step of mass-drop

Failed... iterate the mass drop

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014

Good... Now recluster what is left with a smaller R

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014

And keep only the 3 hardest

MassDrop for $H \rightarrow b\bar{b}$ searches

[J.Buterworth, A.Davison, M.Rubin, G.Salam, 08]

32 / 53

This is the kind of Higgs reconstruction one would get

N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or minimal]

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T} R^{\beta}} \sum_{i \in jet} p_{t,i} \min^{\beta}(\theta_{i,a_{1}}, \dots, \theta_{i,a_{n}})$$

N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or minimal]

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T} R^{\beta}} \sum_{i \in jet} p_{t,i} \min^{\beta}(\theta_{i,a_{1}}, \dots, \theta_{i,a_{n}})$$

• Measure of the radiation from N prongs

N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or minimal]

$$\tau_{N}^{(\beta)} = \frac{1}{p_{T} R^{\beta}} \sum_{i \in jet} p_{t,i} \min^{\beta}(\theta_{i,a_{1}}, \dots, \theta_{i,a_{n}})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N / \tau_{N-1}$ is a good variable for *N*-prong v. QCD

N-subjettiness

Given N directions in a jet (axes) [\neq options, e.g. k_t subjets or minimal]

$$\tau_N^{(\beta)} = \frac{1}{p_T R^\beta} \sum_{i \in jet} p_{t,i} \min^\beta(\theta_{i,a_1}, \dots, \theta_{i,a_n})$$

- Measure of the radiation from N prongs
- $\tau_{N,N-1} = \tau_N / \tau_{N-1}$ is a good variable for N-prong v. QCD

Planar flow

$$I_{ab} = \frac{1}{m} \sum_{i \in jet} p_{t,i} \frac{p_{a,i}}{p_{t,i}} \frac{p_{b,i}}{p_{t,i}}$$

$$P_f = \frac{4 \det(I)}{\mathrm{tr}^2(I)}$$

33 / 53

vanishes for "linear" configurations \Rightarrow measures planar configurations

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014

Jet substructure

A few practical examples

Example 1: Monte Carlo v. data

Trimming

Example 1: Monte Carlo v. data

("Groomed" mass)/(plain mass)

Example 1: Monte Carlo v. data

N-subjettiness τ_{32}

- 4 日 - 1

Example 1: Monte Carlo v. data

N-subjettiness τ_{32}

trimming+ τ_{32}

In a nutshell

- decent agreement between data and Monte-Carlo
- but some differences are observed

Example 2: top tagging MC study

[Boost 2011 proceedings]

Jet substructure A few practical examples

Example 3: recent MC study of W tagging

[Boost 2013 WG]

39 / 53

W v. q jets: combination of "2-core finder" + "radiation constraint"

Jet substructure A few practical examples

Example 3: recent MC study of W tagging

[Boost 2013 WG]

W v. q jets: combination of "2-core finder" + "radiation constraint"

- Combination largely helps
- details not so obvious

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October

STOP and think

can we stop blindly running Monte-Carlo and understand things better (from first-principle QCD)?

$$\frac{1}{\sigma}\frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$

• We focus on small-R, $p_t R \gg m$

$$\frac{1}{\sigma}\frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \, \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2) \\ \approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \, \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$

• We focus on small-R,
$$p_t R \gg m$$

•
$$P(z) = 2C_R/z$$
 up to subleading (log) corrections

•
$$(1-z)$$
 only need to power (of $m/(p_t R)$) corrections

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$
$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$
$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

• We focus on small-R, $p_t R \gg m$

- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_t R)$) corrections
- we get a logarithmic enhancement

$$\frac{1}{\sigma} \frac{d\sigma}{dm^2} = \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, P(z) \frac{\alpha_s}{2\pi} \delta(m^2 - z(1-z)\theta^2 p_t^2)$$
$$\approx \int_0^{R^2} \frac{d\theta^2}{\theta^2} \int_0^1 dz \, \frac{2C_R}{z} \frac{\alpha_s}{2\pi} \delta(m^2 - z\theta^2 p_t^2)$$
$$\approx \frac{\alpha_s C_R}{\pi} \frac{1}{m^2} \log(p_t^2 R^2 / m^2)$$

- We focus on small-R, $p_t R \gg m$
- $P(z) = 2C_R/z$ up to subleading (log) corrections
- (1-z) only need to power (of $m/(p_t R)$) corrections
- we get a logarithmic enhancement
- Or, for the integrated distribution, using $ho = m^2/(p_t^2 R^2)$

$$P_1(>\rho) = \int_{\rho}^{1} dx \frac{1}{\sigma} \frac{d\sigma}{dx} = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

$$\mathsf{P}_1(>
ho)=lpha_s\mathsf{C}_{\mathsf{R}}\pi\,rac{1}{2}\log^2(1/
ho)$$

$$P_1(>
ho)=lpha_s C_R \pi \, rac{1}{2} \log^2(1/
ho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative!

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P_1(>
ho)=lpha_s C_R \pi \, rac{1}{2} \log^2(1/
ho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$

• "virtual" includes any number of the *n* gluons being virtual

$$P_1(>
ho)=lpha_s C_R \pi \, rac{1}{2} \log^2(1/
ho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \prod_{i=1}^{n} \left[\Theta(z_i\theta_i^2 < \rho R^2) - 1\right]$$

• "virtual" includes any number of the n gluons being virtual

• Leading term: independent emissions

$$P_1(>\rho) = \alpha_s C_R \pi \frac{1}{2} \log^2(1/\rho)$$

For small enough $\rho = m^2/(p_t^2 R^2)$, $\alpha_s \log^2(\rho) \sim 1$: no more perturbative! \Rightarrow resum contributions at all orders

$$P(<\rho) = \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \left[\Theta(m_{12...n}^2 < \rho) + \text{virtual}\right]$$
$$= \sum_{n=0}^{\infty} \frac{1}{n!} \int_{0}^{R^2} \frac{d\theta_i^2}{\theta_i^2} \int_{0}^{1} dz_i P(z_i) \left(\frac{\alpha_s}{2\pi}\right)^n \prod_{i=1}^{n} \left[\Theta(z_i\theta_i^2 < \rho R^2) - 1\right]$$
$$= \exp\left[-P_1(>\rho)\right]$$

- "virtual" includes any number of the *n* gluons being virtual
- Leading term: independent emissions
- Sudakov exponentiation

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014 42 / 53

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs
$$(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$$
:

$$P(\rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

A much more general situation

For a jet shape v we will get terms enhanced by $\log^{(2)}(1/v)$ that have to be resummed at all orders

Leading log (LL)

Resums double logs
$$(\alpha_s \log^2(1/\nu))^n = (\alpha_s L^2)^n$$
:

$$P(\rho)\right]$$

Note: including running-coupling corrections: $P_1 = \sum_{k=1}^{n} (\alpha_s L)^k L$

Physics idea

- Remember: (i) independent emissions, (ii) real and virtual emissions
- emissions "smaller" than v: do not contribute: real and virtual cancel
- emissions "larger" than v: real are vetoed

 \Rightarrow we are left with virtuals(=-real)

Next-to-leading log (NLL)

$$P(< v) = \exp\left[-g_1(\alpha_s L)L - g_2(\alpha_s L)\right]$$

- g1 includes double logs (with running coupling)
- g₂ includes single logs
 - Finite piece in P(z)
 - Multiple (not independent) emissions contributing to v
 - 2-loop running coupling (+ scheme dependence)
 - Nasty non-global logs (out-of-jet emissions emitting back in)
- Can be matched to a fixed-order calculation

44 / 53

A few plots to illustrate what is going on

matching LO fixed-order with NLL resummation

Z+jet, R=1.0, p_{TJ} > 200 GeV

A few plots to illustrate what is going on

Comparison with parton shower

Z+jet, R=0.6, p_{TJ} > 200 GeV

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014 46 / 53

A few plots to illustrate what is going on

Including hadronisation

Z+jet, R=0.6, p_{TJ} > 200 GeV

same approach for jet-substructure tools

Monte-Carlo v. analytic

[M.Dasgupta, A.Fregoso, S.Marzani, G.Salam, 13]

49 / 53

First analytic understanding of jet substructure:

Similar behaviour at large mass/small boost (region tested so far)
Significant differences at larger boost

Grégory Soyez (IPhT, CEA Saclay) Jets: seeing quarks, gluons and more at the L October 21-31, 2014

• Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$

• Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

• Focus on logarithmically enhanced terms

$${\cal P}_1(>
ho) = rac{lpha_{s} {\cal C}_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

• Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<
ho) = \exp\left[-P_1(>
ho)
ight]$$

- Boosted limit: $p_t \gg m$ or $ho = m^2/(p_t R)^2 \ll 1$
- Emission of one gluon:

$$P_{1}(>\rho) = \frac{\alpha_{s}C_{F}}{\pi} \int \frac{d\theta^{2}}{\theta^{2}} dz P_{gq}(z) \underbrace{\Theta(z > z_{cut})}_{sym. cut} \underbrace{\Theta(z(1-z)\theta^{2} > \rho R^{2})}_{mass}$$

• Focus on logarithmically enhanced terms

$$P_1(>
ho) = rac{lpha_s C_F}{\pi} \left[\log(1/
ho) \log(1/z_{
m cut}) - rac{3}{4} \log(1/
ho) - rac{1}{2} \log^2(1/z_{
m cut})
ight]$$

• All-order resummation: exponentiation!

$$P_{\text{all orders}}(<
ho) = \exp\left[-P_1(>
ho)
ight]$$

50 / 53

• single log in ρ !

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs

- Original mass-drop tagger had an extra "mass-drop" condition: no contribution at this order (+work in progress)
- Original mass-drop tagger had an extra "filtering" step: no contribution at this order
- Original mass-drop tagger recursed into most massive branch: looses direct exponentiation!
- Absence of problematic non-global logs
- Non-perturbative corrections using similar techniques than previously

• Trimming:

- Same as mass-drop for $ho \geq f_{
 m filt}(R_{
 m filt}/R)^2$
- double log behaviour $(\log^2(1/
 ho)$ of plain jet mass for $ho < f_{
 m filt}(R_{
 m filt}/R)^2$

• Trimming:

- Same as mass-drop for $\rho \geq f_{\rm filt} (R_{\rm filt}/R)^2$
- double log behaviour (log $^2(1/
 ho)$ of plain jet mass for $ho < f_{
 m filt}(R_{
 m filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

• Trimming:

- Same as mass-drop for $ho \geq f_{
 m filt}(R_{
 m filt}/R)^2$
- double log behaviour (log $^2(1/
 ho)$ of plain jet mass for $ho < f_{
 m filt}(R_{
 m filt}/R)^2$
- SoftDrop: essentially the same as mMDT but with double logs

Stay tuned

First-principle understanding of jet substructure

- is still a young field but looks promising
- allows to understand what is going on
- allows control over th. uncertainties
- allows to introduce new, better, tools

52 / 53

Summary

Jets are everywhere

hard quarks/gluons in a collider event come out as jets
Summary

Jets are everywhere

hard quarks/gluons in a collider event come out as jets

Beware of IR divergences

- Use IRC-safe observables (insensitive to coll. and soft em.)
- Often give you logs (sometimes to be resummed)
- Specify your objects clearly (e.g. jet R and $p_{t,min}$

Summary

Jets are everywhere

hard quarks/gluons in a collider event come out as jets

Beware of IR divergences

- Use IRC-safe observables (insensitive to coll. and soft em.)
- Often give you logs (sometimes to be resummed)
- Specify your objects clearly (e.g. jet R and p_{t,min}

Boosted jets

- Other objects can give you jets
- Increasing importance in the future
- room for both QCD & important particle-physics measurements

53 / 53