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In the last lecture we finally derived 
the BFKL equation 

There was bibliography in the last slide of the 
lecture but we should stress that the method 
presented was based mainly on two books:



  



  



  

Remember the gluon reggeization

An ansatz seems natural:

The reggeization of the gluon; Bootstrap equation



  

Again, time to iterate, set the t-channel 
gluons to reggeized gluons, use the 
conditions:

and after the  Mellin transform to 
unfold the nested integrations over 
phase space, you finally get:  

Let us pick it up from here... Strong ordering in rapidity



  

Fixed order VS resummation

Again on the whiteboard...

We should keep in mind that we are discussing a calculation in 
perturbation theory



  

Let us try to 
understand the 
BFKL equation

At this point we were calculating 
the imaginary part of the 
amplitude to the right. This kind of 
diagrams are the so-called ladder 
diagrams



  

Let us try to 
understand the 
BFKL equation



  

Remember we 
had to do 
something about 
the (n+2)-body 
phase space 

After integrating over βi we obtain:

Let us try to understand the BFKL 
equation



  

Let us try to understand the BFKL 
equation

Contraction of 
Lipatov's effective 
vertices                 



  

Let us try to understand the BFKL 
equation

Remember also that to unfold the nested integration we took a Mellin transform



  

Let us try to understand the BFKL 
equation



  

Let us try to understand the BFKL 
equation

Let us define the following:

Then we will have the following integral equation in which we 
encode the behaviour of f1(ω, q2):

The subscript R will be from now on 1



  

Let us try to understand the BFKL 
equation



  

The BFKL equation



  

To complete the story...

Suppose now that we know

The we take an inverse Mellin 
transform to go back to s-space

And to recover the imaginary part of the ladder diagrams all we need to do is:



  

The BFKL equation for zero 
momentum transfer, q=0

Or symbolically:

where



  

SOLVING THE BFKL EQUATION



  

Solution for zero momentum transfer

Let us write symbolically:

By solving the equation 
we mean finding 
eigenfunctions such that:

The eigenfunction obey the 
completeness relation:

Then the solution to the first 
equation will be:

α denotes a set of indices that can be discrete or continuous and 
the summation symbol can hide an integration 



  

Solution for zero momentum transfer

Let us write symbolically:

By solving the equation 
we mean finding 
eigenfunctions such that:

Actually, if we use polar coordinates

the eigenfunctions are:

obeying:

whereas the eigenvalues are: 



  

Solution for zero momentum transfer

The solution will then be:

Here, n is also called conformal spin, it is connected to the angular 
information encoded in the gluon Green's function.



  

Solution for zero momentum transfer
Hands on... Let us use Mathematica to plot things and draw conclusions

omega[n_, v_] := Module[{asBar = 1/5}, 
   Return[2 asBar (PolyGamma[0, 1] - 
     Re[PolyGamma[(Abs[n] + 1)/2 + I v]])]];

Plot[{omega[0, � ], omega[1, � ], omega[2, � ],
  omega[3, � ], omega[4, � ]}, {� , 0, 3}]



  

Solution for zero momentum transfer

Retain only the n=0 term, this 
from the analysis before

Expanding around 
zero where we have 
the maximum gives:



  

Solution for zero momentum transfer

Set:

Take the inverse Mellin transform

Pomeron 
solution of the 
BFKL equation



  

Solution for zero momentum transfer

QCD Pomeron intercept way too large in comparison to the soft Pomeron intercept 



  

Solution for zero momentum transfer

omega[n_, v_] := Module[{asBar = 1/5}, 
   Return[2 asBar (PolyGamma[0, 1] - 
     Re[PolyGamma[(Abs[n] + 1)/2 + I v]])]];

analytic[n_, Y_, ka_, kb_, angle_] := 
NIntegrate[Exp[I*n*angle]/(2Pi^2)/ka/kb*2*Exp[omega[n,v]Y]* 
Cos[2 Log[(ka/kb)] v], {v, 0, Infinity}, WorkingPrecision -> 20];

Now you can calculate the LO gluon Green's function for a given rapidity Y, 
conformal spin n, and certain momenta of the reggeized gluons. 

Again in Mathematica:

Note: Many times, in the 
literature, the leading 
eigenvalue is denoted as
Χ0. It is also called 
sometimes as the LO 
BFKL kernel!



  

The gluon Green's function

GGF



  

To connect with the lectures by 
Beatriz and Edmond

Evolution eq. in 
rapidity

Unintegrated gluon distribution: 
the probability to find a gluon with 
longitudinal momentum fraction x 
and transverse momentum k

DIS



  

Bibliography II (very incomplete)

● Forshaw & Ross, “Quantum Chromodynamics and the 
Pomeron”

● Barone & Predazzi, High Energy Particle Diffraction

● Ioffe, Fadin & Lipatov, “Quantum Chromodynamics: 
Perturbative and Nonperturbative Aspects”

● Kovchegov & Levin, “Quantum Chromodynamics at High 
Energy”

● Many many review articles...



  

NLO BFKL



  

Regge ansatz



  

A hadronic elastic amplitude

Impact factors... ?



  

Impact factors

Impact factors are effective couplings of the BFKL 
gluon Green's function to the colliding projectiles

They are process dependent objects

One needs to calculate them at a certain order of 
the perturbative expansion, preferably the same 
one as that of the BFKL gluon Green's function.

It is not an easy task to calculate impact factors to 
NLO.  



  

Impact factors

Taken from a talk by B. Murdaca
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