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Deep Inelastic Scaterring

• Deep Inelastic Scatterring (DIS) is a process characterized by
eletromagnetic interaction between a lepton of high energy
(ν, e+, e−) and a nucleon (p, p̄, n):
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Deep Inelastic Scaterring

• Photon four-momentum (qµ = k − k ′) defines the scale of the
process.

• ep process in leading order ⇒ e + p → e + X

• Squared momentum transferred is defined as boson’s virtuality
Q2 = −q2 = − (k − k ′)2.

• From uncertainty principle ∆x ∼ 1
∆p = 1

∆Q is defined the
resolution with which the target is probed.
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Deep Inelastic Scaterring

• Thinking the proton moving with very high momentum P.

• Proton featuring Lorentz contraction in longitudinal direction.

• Inclusive cross section averaged in spin in DIS lepton-hadron
σlh.

• Expressed in terms of two invariant gauge functions that
characterize the target structure, F1 and F2.

• For charged leptons scattering the process is mediated for
photon virtual exchanged in the limit Q2 � M2.

d2σlh

dxdQ2
=

4πα2

xQ2

[
xy2F1

(
x ,Q2

)
+ (1− y)F2

(
x ,Q2

)]
where the proton mass is neglected and x = Q2

2p·q is the Bjorken
scaling variable.
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Deep Inelastic Scaterring

• Constant of electroweak coupling is α and y is the inelasticity.

• Inelasticity in the rest system of target proton can be written
y = 1− E ′

E , where E and E ′ are the energies of initial and
final state, respectively.

• General covariant case → ν = (k ′−k)·p
M = p·q

M .

• Energy transfer → E ′ − E .

• Energy scale of virtual photon is
greater than proton.

• Resolution of proton constituents
can be obtained.
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Deep Inelastic Scaterring

Mandelstam Variables

• s channel: s = (p1 + p2)2 = (p3 + p4)2

• t channel: t = (p1 − p3)2 = (p2 − p4)2

• u channel: s = (p4 − p1)2 = (p2 − p3)2
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Parton Model

• In the parton model the DIS can be viewed as the inelastic
scattering off point particles (partons).
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Parton Model

• With the collinear factorization and the parton model, the DIS
cross section is written in the form

d2σ

dxdQ2

∣∣∣∣
ep→eX

=
∑

i

∫ 1

0
dxfi (x)

d2σ

dxdQ2

∣∣∣∣
eq→eq

where fi (x) is the parton distribution function.

• The number of partons i inside the proton is obtained by

Ni =

∫ 1

0
fi (xi )dxi

• Momentum conservation∑
i

∫ 1

0
xi fi (xi )dxi = 1
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Parton Model

• Structure functions defined in the Bjorken limit F1 and F2 are
relacioned in the parton model

F2 = 2xF1 =
∑

i

e2
i xfi (x)

• Experimental results show that

∑
i

∫ 1

0
xi fi (xi )dxi ≈ 0.5

• Then, neutral partons are necessary and they carry
approximately 50% of the total momentum.

• Such particles are the gluons, mediators of the strong
interaction.
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QCD properties

• Quantum Chromodynamics (QCD) → Strong interaction

• QCD Lagrangian

LQCD = −1

4
FA
αβF

αβ
A +

∑
flavor

q̄a

(
i D̂ −m

)
ab

qb + Lfix + Lghost

• FA
αβ = ∂αG

A
β − ∂βGA

α + gf A
ργG

ρ
αG

γ
β are gluon field tensors.

• f A
ργ are the SU(3) structure constants

• Quarks are fermions with color charge (qaqb)

• Gluons carry color too

• Lfix is the gauge-fixing term

• Lghost introduces the Fadeev-Popov ghosts

• They cancel unphysical degrees of freedom leading to
anomalous terms.
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Feynman Rules for QCD

Gluon Propagator

Quark Propagator

Ghost Propagator

Quark-Gluon Vertex

Ghost-Gluon Vertex
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Feynman Rules for QCD

Three-Gluon Vertex

Four-Gluon Vertex
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Asymptotic Freedom and Confinement

• Asymptotic freedom → high
energies

• Confinement → low energies.

αs

(
Q2
)

=
12π

(33− 2nf ) ln
(

Q2

Λ2

)
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Froissart bound

• The Froissart bound is a limit for the cross section for the
scattering of two hadrons.

• It is derived using Mandelstam representation and is based on
two hypothesiss.

• First Froissart hypothesis: the strong interaction has finite
range.

• This range is determined by the mass mπ

R ∼ 1

mπ

• This scale is nonperturbative.
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Froissart bound

• Second Froissart hypothesis: S-matrix is unitary

SS† + S†S = 1

• The Froissart bound limits the total cross section for
scattering of two hadrons:

σTOT ≤
π

m2
π

(lns)2

• It was derived for all regions of QCD (including pQCD and
npQCD).

• However, the available data show no sign that Froissart bound
is valid (or invalid).
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Froissart bound

• F2 structure function data from
HERA collider and fixed target
experiments.

• At high photon virtualities, the
DIS structure function appears to
increase very fast for a logarithm
dependence.

• One hopes that with more exclus-
ive processes (maybe diffraction)
saturation can be observed.
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Parton Model

• How to obtain predictions for the structure functions in DIS
through the QCD?

• Calculating the contributions for each order in the coupling
through Feynman rules

• In dominant order, only the elastic scattering proton-quark
contributes.

• This process is represented by γ∗q → q′.
• Thus, the structure functions take the form

2F1

(
x ,Q2

)
=

1

x
F2

(
x ,Q2

)
=
∑

q

e2
q

∫
dωq(ω)δ(x − ω) =

∑
q

e2
qq(x)

where ω is the momentum fraction carried by the scattered parton
and q(ω) are the quarks distributions.
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Parton Model

• In the structure functions, there is only x dependence
(Bjorken scale)

• Relation between both structure functions (Callan-Gross):
F2 = 2xF1

• F1 structure function using MRS(A) partonic distributions.
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Parton Model

• How does the presence of gluon radiation determines the
Bjorken scale violation?

• Next order in perturbative expansion occurs gluon emission

γ∗(q) + q(P)→ q(p′) + g(k)
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Parton Model

• When structure functions of the hadronic vertex are extracted,
a dependence on Q2 is found.

• In terms of partonic densities which depend on Q2, q
(
ω,Q2

)
:

1

x
F2

(
x ,Q2

)
≡
∑

q

e2
qq
(
x ,Q2

)
• F2 6= 2xF1

M. B. Gay Ducati Natal - RN, 2014 Evolution Equations 22 / 76



Introduction
Parton Model

DGLAP
BFKL

GFPAE

Parton Model

• Its expression is written as

1

x
F2

(
x ,Q2

)
=

∑
q

e2
qαs

2π

∫ 1

x

dz

z
q
(x
z

)∫ Q2/z

0
d
(
−t̂
)
×

× 4

3

[
1

−t̂
1 + z2

1− z
−

z2
(
t̂ + 2Q2

)
(1− z)Q4

]

• Introducing the z variable

z =
x

ω
=

Q2

2p � q
=

Q2

ŝ + Q2

where the variables denoted with hats are the Mandelstam
variables ŝ e t̂ (partonic level).
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Parton Model

• The previous expression has singularities.

• There is a soft infrared singularity in z = 1, corresponding to

ŝ = Q2 1− z

z
= 0

in the limit where the momentum of gluon emitted is k = 0.

• These kind of singularities arise in theories containing a gauge
field without mass (γ in QED and gluon in QCD)

• It is canceled when contributions of vertex corrections are
considered.

• There is a cutoff zsoft < 1
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Parton Model

• Another singularity is the mass singularity or collinear in t̂.

• Related to the incident quark emitting a collinear gluon still
on the mass shell

• These divergences take place when the non-massive field
couples with another massless field (quarks without mass in
QCD or gluons in QCD)

• Soft and collinear singularities are named “infrared
divergences”

• In any process observed there is emission of an indefinite
number of soft photons or gluons.

• Experimentally, the final state of a charged particle is not fully
specified because there are soft photons and gluons with
difficult detection.
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Parton Model

• Considering the collinear divergences → regularizing for
another cutoff t̂ = −µ2

col , which can be absorbed later in the
redefinition of the initial quark distribution.

• Keeping the dominant logarithm ln
(
Q2/µ2

col

)
, the structure

function F2 can be written as,

1

x
F2

(
x ,Q2

)
=
∑

q

e2
qαs

2π

∫ zsoft

x

dz

z
q
(x
z

)
Pqq (z) ln

(
Q2

µ2
col

)
• In general, the integration has non-logarithm terms absorbed
Pqq(z) ln

(
µ2/µ2

col

)
changing the collinear cutoff for a

different scale µ.

• In high Q2, the effect of these terms are suppressed.
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Parton Model

• Using this freedom of choice and defining µ as the
renormalization scale in which the coupling is defined, the
equation above is written as

1

x
F2

(
x ,Q2

)
=
∑

q

e2
qαs

(
µ2
)

2π

∫ zsoft

x

dz

z
q
(x
z

)
Pqq (z) ln

(
Q2

µ2

)
• The function Pqq (splitting function quark-quark) is included

with dependence on z of the form

Pqq =
4

3

(
1− z2

1− z

)
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Parton Model

• This function is independent of the regularization prescription
universal for different processes where a quark emerges as a
quark with a gluon radiation.

• Cancellation of soft divergence can be understood using
dimensional regularization t’ Hooft and Veltman.

• Here, the Feynman diagrams are calculated in 4− 2ε
dimensions and the singularities are extracted as poles in ε.
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Parton Model

• Introducing the low order vertexes with the diagram with
virtual gluon

• Sum of Born term and contributions from virtual gluon is

1

x
F2

(
x ,Q2

)
=

∑
q

e2
q

∫ 1

x
q
(x
z

)[
δ(1− z) +

αs

(
µ2
)

2π
Pqq (z) ×

×
[

ln

(
Q2

µ2

)
− 1

ε

]
+ αs

(
µ2
)
f (z)

]
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Parton Model

• Soft singularities are canceled by virtual corrections.

• Splitting function is modified to remove the original singularity

Pqq(z) =
4

3

(
1 + z2

)
(1− z)+

+ 2δ (1− z)

where + is ∫ 1

0
dz

g(z)

(1− z)+
≡
∫ 1

0
dz

g(z)− g(1)

1− z
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Parton Model

• Now, the absorption of these collinear singularities can be
defined in a renormalized distribution of quarks

qR(x) ≡ q(x)+

∫ 1

x

dz

z
q
(x
z

)[
αs

(
µ2
)
f (z)−

αs

(
µ2
)

2π
Pqq(z)

1

z

]

• Notation: qR → renormalized distribution

• Combining these results, the structure function F2 is

1
x F2

(
x ,Q2

)
=
∑
q
e2

q

∫ 1
x

dω
ω q(ω)

[
δ(1− x

ω ) +
αs(µ2)

2π Pqq

(
x
ω

)
ln
(

Q2

µ2

)]
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Parton Model

• A redefinition of quark distributions at high Q2

1

x
F2

(
x ,Q2

)
=
∑

q

e2
qq
(
x ,Q2

)
=
∑

q

e2
q

[
q(x) + δq(x ,Q2)

]
where

δq
(
x ,Q2

)
=
αs(µ2)

2π
ln

(
Q2

µ2

)∫
dω

ω
q(ω)Pqq

( x
ω

)
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DGLAP

• Effect of high orders in the expansion → sum of terms for
order ∝

[
αs (µ) ln Q2/µ2

]n
• These terms are important at high Q2

• Sum can be made through an integro-differential equation,

∂q
(
x ,Q2

)
∂ ln Q2

=
αs

2π

∫ 1

x

dω

ω
q
(
ω,Q2

)
Pqq

( x
ω

)
+O

(
αs

(
µ2
)

ln Q2
)

• This equation considers the ladder diagrams, summing the
contributions of collinear emission of n gluons with quark
distribution
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DGLAP

• One uses the coupling in the renormalization fixed scale µ2

• Using αs

(
Q2
)

and inserting the propagator in the diagrams

• For high Q2

∂q
(
x ,Q2

)
∂ ln Q2

=
αs

2π

∫ 1

x

dω

ω
q
(
ω,Q2

)
Pqq

( x
ω

)
• This evolution equation considers the case when the photon is

absorbed by one quark originated by an initial quark with
momentum fraction ω < x

• Since this quark originates in a gluon, the splitting function of
quark is

Pqg (z) =
1

2

[
z2 + (1− z)2

]
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DGLAP

• Evolution for quarks becomes

∂qi (x ,Q2)
∂ ln Q2 =

αs(Q2)
2π

∫ 1
x

dω
ω

[
qi

(
ω,Q2

)
Pqq

(
x
ω

)
+ g

(
ω,Q2

)
Pqg

(
x
ω

)]
where the collinear singularity ε−1 is absorbed in the gluon
distribution (quarks)

• Evolution has validity for any massless quark or antiquark qi

• Additional contribution of equations
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) →
correspondent expression for gluons distribution

∂g(x ,Q2)
∂ ln Q2 =

αs(Q2)
2π

∫ 1
x

dω
ω

[∑
i
qi

(
ω,Q2

)
Pgq

(
x
ω

)
+ g

(
ω,Q2

)
Pgg

(
x
ω

)]

M. B. Gay Ducati Natal - RN, 2014 Evolution Equations 35 / 76



Introduction
Parton Model

DGLAP
BFKL

GFPAE

DGLAP

• Quark-gluon and gluon-gluon splitting functions

Pgq(z) =
4

3

[
1 + (1− z)2

z

]
Splitting function Pgq → probability of an initial quark to emit a gluon.

Pgg (z) = 6

[
(1− z)

z
+

z

(1− z)+

+

+ z (1− z) +

(
11

12
− nf

18

)
δ (1− z)

]
Splitting function Pgg → probability of a gluon in the initial state to emit a

gluon.
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DGLAP

• gluon-quark and quark-quark splitting functions

Pqg (z) =
1

2

[
z2 + (1− z)2

]
Splitting function Pqg → probability of an initial gluon to emit a quark.

Pqq(z) =
4

3

[(
1 + z2

)
(1− z)+

+
3

2
δ(1− z)

]
Splitting function Pqq → probability of a quark in the initial state to emit a

quark.
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DGLAP

• Derivation made is in leading-order (LO) for the DGLAP
formalism

• Splitting functions can be obtained as a perturbative
expansion in αs

Pab

(
x ,Q2

)
= PLO

ab (x) + αs(Q2)PNLO
ab (x) + ...

• Truncate after the first two terms leaves DGLAP evolution in
next-to-leading-order (NLO).

• Beyond leading-order the splitting functions dependence on
factorization scale.
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DGLAP

• In next-to-leading-order (NLO) the Callan-Gross relation is no
more satisfied → longitudinal structure function

FL

(
x ,Q2

)
=

(
1 +

4M2x2

Q2

)
F2

(
x ,Q2

)
− 2xF1

(
x ,Q2

)
M is the proton mass

• Function FL = F2 − 2xF1(Q2 →∞)

• FL � F2 is the confirmation that quarks have spin 1/2
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DGLAP Solution

• Knowledge of the solution, knowledge of the evolution of the
partonic distributions in Q2.

• Initial value in any initial scale Q2
0 sufficiently high to

guarantee the use of perturbation theory.

• Condition Q2
0 � Λ2, where Q2 = Λ2 is the Landau pole for

QCD:

αs

(
Q2
)

=
1

b ln Q2

Λ2

≡ 1

bt

• Introducing variable t, in contrast of Q and b

Pqq ⊗ qi ≡
∫ 1

x

dω

ω
Pqq

( x
ω

)
qi (ω, t)
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DGLAP Solution

• DGLAP equations are written as

dqi (x , t)

dt
=

αs(t)

2π
[Pqq ⊗ qi + Pqg ⊗ g ]

dg(x , t)

dt
=

αs(t)

2π

[
Pgq ⊗

∑
i

qi + Pgg ⊗ g

]
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DGLAP Solution

• Simplify this equation → symmetry combination of flavor
SU(nf ) singlet and non-singlet of partonic distributions.

• Singlet combination is given by

qS (x , t) =
∑

i

[qi (x , t) + q̄i (x , t)]

summing all over active flavors.

• Combinations non-singlet qNS (x , t) are given by u − ū,
d − d̄ ,...
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DGLAP Solution

• Combinations satisfy the equations

dqNS (x , t)

dt
=

αs(t)

2π
Pqq ⊗ qNS

dqS (x , t)

dt
=

αs(t)

2π

[
Pqq ⊗ qS + 2nf Pqg ⊗ g

]
dg(x , t)

dt
=

αs(t)

2π

[
Pgq ⊗ qS + Pgg ⊗ g

]
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DGLAP Solution

• Convenient transformation → considering the distributions of
partonic momenta and splitting functions

• Evaluate by Mellin transform in a conjugate space j,

qj (t) =

∫ 1

0
dxx j−1q (x , t)

γj =

∫ 1

0
dxx j−1P (x)

where this second equation is the definition of anomalous
dimension.

M. B. Gay Ducati Natal - RN, 2014 Evolution Equations 44 / 76



Introduction
Parton Model

DGLAP
BFKL

GFPAE

DGLAP Solution

• Then, the equations can be expressed by

dqNS
j (x , t)

dt
=

1

2πbt
γqq

j qNS
j

dqS
J (x , t)

dt
=

1

2πbt

[
γqq

j qS
j + 2nf γ

qq
j gj

]
dgj (x , t)

dt
=

1

2πbt

[
γgq

j qS
j + γgg

j gj

]
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DGLAP Solution

• Solution for non-singlet momenta → not the same

qNS
j (t) = qNS

j (t0)

(
αs (t0)

αs (t)

) γ
qq
j

2πb

• Distributions in x space are given by

qNS (x , t) =
1

2πi

∫
C
djx−jqNS

j (t)

• Contour of integration in the complex plane with j parallel to
the imaginary axis and with integer right singularities.

• Singlet momenta can be evaluated with a similar calculation.
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Comparing with the data

• F2 structure function with fixed x, com-

pared with global fit using DGLAP evolu-

tion elaborated by MRST group.
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DGLAP Solution What is this good for?

• To extract partonic distributions from the data, consider an
initial parametrization in the behavior of variable function x
for different partonic distributions at low Q2

0 .

• Using the DGLAP evolution equations to evolve the partonic
distributions for any larger Q2 where observables are
measured.

• Fit (choice) of parameters used in parametrization of initial
conditions.

• Choice of nonperturbative parameters.

• Contribution from sea quarks (originated by quark-antiquark
pairs produced in a gluonic splitting) g → qq̄ → growth in
small x .

• Leading distribution in this region is the gluonic distribution.
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DGLAP Solution

• Partonic distributions determ-

ined by fit to ZEUS data.
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DGLAP Solution

• For the DGLAP equations the contributions are proportional
to [

αs

(
Q2
)

ln

(
Q2

Q2
0

)]n

• Strong ordering on the transverse momenta of parton in the
partonic cascades and corresponding to leading logarithm
approximation (LLA)

• Validity in the limit

αs

(
Q2
)

ln

(
1

x

)
� αs

(
Q2
)

ln

(
Q2

Q2
0

)
< 1
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DGLAP Solution

• At small x the gluon distribution dominates.

• Divergence in the splitting functions Pgq and Pgg

• DGLAP in small x limit is written as

dqi

(
x ,Q2

)
d ln Q2

≈
αs

(
Q2
)

2π

∫ 1

x

dz

z
Pqg (z) g

(x
z
,Q2

)
≡
αs

(
Q2
)

2π
Pqg ⊗ g

dg
(
x ,Q2

)
d ln Q2

≈
αs

(
Q2
)

2π

∫ 1

x

dz

z
Pgg (z) g

(x
z
,Q2

)
≡
αs

(
Q2
)

2π
Pgg ⊗ g
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DGLAP Solution in Small-x

• Due to the Q2 dependence of the parton distribution, the
structure function in DIS, F2, can be written as

F2

(
x ,Q2

)
= x

∑
i

e2
i

[
qi

(
x ,Q2

)
+ q̄i

(
x ,Q2

)]
+O

(
αε∫ )

• Described by the DGLAP evolution equations

• Higher orders in αs are evaluated by the following substitution
in the DGLAP evolution equations

αs

(
Q2
)

2π
P0

ij →
αs

(
Q2
)

2π
P0

ij +

(
αs

(
Q2
)

2π

)2

P1
ij + ...
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DGLAP Solution in Small-x

• At small x → gluon dominance.

P0
gg (z) ∼ 2Nc

z
⇒ xg

(
x ,Q2

)
∼ x−λ, λ > 0

• Parton distribution at small x

xpi

(
x ,Q2

0

)
∼ const.

where Q2
0 is the initial condition.

xpi ∼ exp

{√
ξ (Q2) ln (1/x)

}
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DGLAP Solution in Small-x

• This is the Double Logarithm approximation, where

ξ
(
Q2
)

=

∫ Q2

Q2
0

dq2

q2

Ncαsq
2

π

• There is an increase in the gluon and quark distributions and
in the structure function F2

• Momentum fraction x decreases
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DGLAP Solution in Small-x

• To understand the interaction in the strong regime for small x
→ challenge in QCD.

• Structure functions in the region of small x and study of
transition between perturbative and nonperturbative regime is
made by DIS.

• DGLAP equations for partonic distributions have good
description of the physics of scaling violation.

• Several questions still remain:
• Where begins the a small x regime?
• For which values of momentum fraction x where DGLAP

formalism for evolution of structure functions becomes
unappropriated?

• With current data → F2 growth in the x = 0 limit

• This growth is larger with increasing Q2.
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DGLAP Solution in Small-x

• Basic question: this behavior can be understood in terms of
QCD?

• Splitting structure are evaluated with a series expansion with
powers of coupling on the constant

• NLO terms are known

• Gluon-gluon splitting function Pgg (x , αs (Q2)) in fixed order
singularity in small-x

• Behavior ≈ αs/x

• Singularity growth of F2 to small-x

• What is the dynamics of this growth?
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DGLAP Solution in Small-x

• Naive version of evolution equation can be solution to this
question.

• Evolution for the gluonic distribution (dominant parton in
x → 0 and singular term Pgg ,

dgj

dt
=
αt (t)

2π
γgg

j gj

• Limit x → 0, partonic distributions give the behavior of
anomalous dimension γgg

j for j ≈ 1 (Nc being the number of
colors)

γgg
j '

2Nc

j − 1
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DGLAP Solution in Small-x

• Solution for the momenta of gluon distribution in this limit is

gj (t) = gj (t0) exp
Ncη(t)

j − 1

with η function defined by

η(t) =

∫ t

t0

dt ′αs(t ′)

• Back to x space, consider the Mellin inverse transform

g(x , t) =
1

2πi

∫
djx−jgj (t)

=
1

2πi

∫
djgj (t0)exp

(
j ln

1

x
+

Ncη(t)

j − 1

)
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DGLAP Solution in Small-x

• When Q2 is high and x is small

• Expansion close to saddle point of exponential jsaddle

jsaddle = 1 +

√
Ncη(t)

ln 1
x

• Solution is expressed in the original variable

g
(
x ,Q2

)
∼ 1

x
exp

√
Nc

πb
ln

[(
ln

Q2

Λ2

)
/

(
ln

Q2
0

Λ2

)]
ln

1

x

M. B. Gay Ducati Natal - RN, 2014 Evolution Equations 59 / 76



Introduction
Parton Model

DGLAP
BFKL

GFPAE

DGLAP Solution in Small-x

• This result is Double Logarithm Approximation domain
(DLA), where the logarithms are summed by

[
αs

(
Q2
)

ln

(
Q2

Q2
0

)
ln

(
1

x

)]n

• Solution is valid when one uses a soft initial distribution

• In this case, x asymptotic dependence is dominated by
splitting perturbative function.

• A question arises: what happens if one chooses a stronger
initial dependence, for example,

g (x , t0) = Cx−j0
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DGLAP Solution in Small-x

• In this case, one must be more careful → singularities on the
right of the saddle point

gj (t0) =
C

j − j0

• Solution can be found at small-x → choice of contour of
integration close to the pole of the initial distribution.
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DGLAP Solution in Small-x

• Integral value is

g (x , t) = Cx−j0 exp
Nη(t)

j0 − 1

and the original behavior in x remains beyond the evolution in Q2

• Behavior as asymptotic dependence of non-perturbative
parameter j0

• Presence of this non-perturbative term → starts as singular
initial condition

• This is a way to produce perturbative growth in small-x
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Nuclear effects

• Ratio between nuclear structure functions and nucleon,
normalized to A shows some modication of the nuclear
structure function

• First result → modication in the nuclear structure function
was the EMC effect (Arneodo PR240, 301 (1994)).
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Nuclear effects

• What is wrong with the parton model?

• Theoretical expectation

FA
2

(
x ,Q2

)
= AF p

2

(
x ,Q2

)
• Then

R =
FA

2

(
x ,Q2

)
AF p

2 (x ,Q2)
= 1

• R 6= 1, and there is A dependence of the nuclear effects
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Unitarity

• Observed that F2 increases for smaller values of x → violation
of the unitarity

• Unitarity limit is the Froissart limit → shows that the cross
section cannot be larger than σ ≤ cte ln2s

• Motivation - to restore the unitarity

• Small x region (high energy) is the interface between
non-perturbative QCD (npQCD) and perturbative QCD

• In this interface the coupling constant αs is still small

• x < 10−2 → dynamical (collective) effects
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Unitarity

Problem:

• Analytically separate the perturbative and nonperturbative
aspects.

• Small and large distances.

• Contributions to high energy.

• Amplitudes in a properly gauge invariant formalism.
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Possible Solutions
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BFKL

• Takes into account diagrams that contribute with terms of
order [(αs) ln(1/x)]n with αs ln

(
Q2/Q2

0

)
� 1 e

αs ln(1/x) ≈ 1.

• Ordering in transverse moments becomes moderate.

• Included the integration over the whole phase space formed by
the transverse components of the moments of the emitted
partons.

• In this kinematic region, the DGLAP evolution equations are
no longer valid.

• A new dynamic is needed to describe the partonic
distributions.

M. B. Gay Ducati Natal - RN, 2014 Evolution Equations 68 / 76



Introduction
Parton Model

DGLAP
BFKL

GFPAE

BFKL

• Proposal: Y. Balitski, V. Fadin, E. Kuraev e L. Lipatov
(BFKL).

• Equation that describes the evolution in the Bjorken variable
x.

• It is written in terms of non-integrated function of gluons
φ
(
x , k2
⊥
)
, which gives the probability of finding a gluon in the

nucleon with transverse momentum k2
⊥ and fraction of

longitudinal moment x.

• This function is related to the usual function of gluons by

xg
(
x ,Q2

)
=

∫ Q2
dk2
⊥

k2
⊥
φ
(
x , k2
⊥
)
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BFKL

• Resummation of leading log(1/x) - terms (αs ln(1/x))n is
performed in the BFKL approach

• Based on the gluon Reggeization, property of QCD very
important for description of high energy process.

• In the leading logarithmic approximation (LLA) it predicts
σ ∼

(
1
x

)ωP where the Pomeron intercept (with subtracted 1)

ωP = 4Nc
αs

π
ln2

• The gluon Reggeization hypothesis is proved in the NLA.
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BFKL

• The differential form of BFKL equation is given by

∂φ
(
x , k2
⊥
)

∂ ln(1/x)
=

3αs

π
k2
⊥

∫ ∞
0

dk
′2
⊥

k
′2
⊥

φ
(
x , k

′2
⊥

)
− φ

(
x , k2
⊥
)∣∣k ′2

⊥ − k2
⊥
∣∣ +

φ
(
x , k2
⊥
)√

4k
′4
⊥ + k4

⊥


• It is valid for sufficiently small values of x0, such that

αs � 1, αs ln
(
Q2/Q2

0

)
� 1, ln (1/x) ≈ 1
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BFKL

• In the high energy limit, the gluons distribuition dominates
the evolution.

• The BFKL equation can be represented as a ladder diagram
effective, with strong ordering in the longitudinal moments
and without ordering in the transverse moments,

x � xi+1 � ...� x1 � 1,

Q2 ≈ k⊥i+1 ≈ ... ≈ k⊥1 ≈ Q2
0
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BFKL Solution

• From Mellin transform of the function φ
(
x , k2

)
in the variable

k2, is possible to obtain an analytical solution to the BFKL
equation in the form

∂φ (x , γ̄)

∂ ln(1/x)
= K̄ (γ̄)φ (x , γ̄)

whose solution is

φ (x , γ̄) = φ (x , γ̄)

(
x

x0

)−K̄(γ̄)

where γ̄ is the conjugate variable of k2, φ (x , γ̄) is the transformed
function and K̄ is the transformed kernel.
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BFKL Solution

• Using an explicit form for the transformed functions, one
obtains the non integrated gluon function

φ
(
x , k2

)
=

(
x

x0

)−λ √
k2φ (x0, γ̄ = 1/2)

(6αs28ζ(3) ln (x/x0))1/2
exp

{
− ln

(
k2/k̄2

)
6αs
π 28ζ(3) ln (x/x0)

}

where ζ(x) is the Riemann Zeta function.

• The first term produces the behavior x−λ for the non
integrated gluon distribution, characteristic of the BFKL
formalism.

• The BFKL dynamics predicts a rapid growth of the cross
section σ(γ∗N) with the energy.
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Predictions for F2

• BFKL prescription for F2 compared with

HERA data.
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Limitations of BFKL

• Solutions obtained for αs independent of Q2.

• This limits the validity of the equation to a small range Q2,
where the behavior of the coupling constant can be
approximated.

• The prediction of a large increase in the number of gluons
violates the Froissart bound.

σtot < const ( ln s)2

• To include new radiative corrections at any fixed order does
not solve the problem.

• Proposal: Non linear evolution equations!
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