

Cosmology: Lecture #3 Dark Matter models. Inflation. Inhomogeneities in the expanding Universe

Dmitry Gorbunov

Institute for Nuclear Research of RAS, Moscow

Outline

- 2 [Problems of the Big Bang Theory](#page-14-0)
- 3 [Inflationary stage](#page-22-0)

Outline

- [Problems of the Big Bang Theory](#page-14-0)
- [Inflationary stage](#page-22-0)
- **[Outcome for Particle Physics](#page-40-0)**

Dark Matter Properties *p* = 0

(If) particles:

- **1** stable on cosmological time-scale
- ² nonrelativistic long before RD/MD-transition (either Cold or Warm, *vRD*/*MD* . 10−³)
- ³ (almost) collisionless
- ⁴ (almost) electrically neutral

If were in thermal equilibrium: $M_X \geq 1$ keV

If not: for bosons

 $\lambda = 2\pi/(M_Xv_{\rm X})$, in a galaxy $v_{\rm X} \sim 0.5 \cdot 10^{-3} \longrightarrow M_{\rm X} \gtrsim 3 \cdot 10^{-22}$ eV

for fermions

Pauli blocking: $M_x \ge 750 \text{ eV}$

$$
f(\mathbf{p}, \mathbf{x}) = \frac{\rho_{\mathsf{x}}(\mathbf{x})}{M_{\mathsf{x}}} \cdot \frac{1}{\left(\sqrt{2\pi}M_{\mathsf{x}}v_{\mathsf{x}}\right)^3} \cdot e^{-\frac{\mathbf{p}^2}{2M_{\mathsf{x}}^2v_{\mathsf{x}}^2}}\Bigg|_{\mathbf{p}=\mathbf{0}} \leq \frac{g_{\mathsf{x}}}{\left(2\pi\right)^3}
$$

Dark Matter Candidates

- WIMPs (neutralino, . . .)
- sterile neutrinos
- **o** gravitino
- \bullet axion
- **•** Heavy relics
- (Topological) defects
- Massive Astrophysical Compact Halo Objects
- Primordial black hole remnants

Weakly Interacting Massive Particles

Assumptions:

- **1** no $X \bar{X}$ asymmetry *n*_X = *n*_{\bar{X}}
	-
- $2 \text{ } \textcircled{a}$ $T < M_X$ in thermal equilibrium with plasma

$$
n_{\mathsf{X}} = n_{\overline{\mathsf{X}}} = g_{\mathsf{X}} \left(\frac{M_{\mathsf{X}} T}{2\pi} \right)^{3/2} e^{-M_{\mathsf{X}}/T}
$$

 $X\bar{X} \longrightarrow$ light particles

freeze-out temperature T_f

Pl ⁼ *^MPl*/1.66[√] *g*∗

$$
\frac{1}{n_\textsf{x}}\frac{1}{\langle \sigma_{\textsf{ann}} \nu \rangle} = H^{-1}(T_f) \longrightarrow T_f = \frac{M_\textsf{x}}{\log\left(\frac{g_\textsf{x} M_\textsf{x} M_\textsf{Pl}^* \sigma_0}{(2\pi)^{3/2}}\right)}\ .
$$

Bethe formula: $\qquad \qquad \qquad \qquad \qquad \text{annihilation in s-wave: } \sigma_{\text{ann}} = \frac{\sigma_0}{\nu}$

 \sim

Weakly Interacting Massive Particles (WIMPs)

density after freeze-out:
\npresent density:
$$
n_x(T_0) = \left(\frac{a(T_f)}{a(T_0)}\right)^3 n_x(T_f) = \left(\frac{s_0}{s(T_f)}\right) n_x(T_f) \propto \frac{1}{T_f} \propto \frac{1}{M_x}
$$

\n $X + \bar{X}$ contribution to critical density:
\n
$$
\Omega_x = 2 \frac{M_x n_x(T_0)}{\rho_c} = 7.6 \frac{s_0 \log \left(\frac{g_x M_{\text{Pl}}^* M_x \sigma_0}{(2\pi)^{3/2}}\right)}{\rho_c \sigma_0 M_{\text{Pl}} \sqrt{g_x(T_f)}}
$$
\n
$$
= 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{0.3}{\sqrt{g_x(T_f)}} \log \left(\frac{g_x M_{\text{Pl}}^* M_x \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}
$$

natural dark matter: $\sigma_0 \sim 0.01 \times \sigma_{weak}$

naturaly "light"

$$
\sigma_0 \lesssim \tfrac{4\pi}{M_X^2} \longrightarrow \ M_X \lesssim 100 \text{ TeV}
$$

WIMPs are mostly welcome

- Do not need new physical scale (and interaction?)
- Can search for WIMPs in collision experiments (LHC):

$$
X + \bar{X} \leftrightarrow SM + SM' + \dots
$$

Can search for WIMPs in cosmic rays: products of WIMPs annihilation (in Galactic center, dwarf galaxies, Sun)

$$
X+\bar X\to p\bar p\,,\ e^+e^-\,,\ \nu,\gamma,\ldots
$$

Direct searches for Galactic Dark Matter (*^v* [∼] ¹⁰−³)

$$
X + \text{nuclei} \rightarrow X + \text{nuclei} + \Delta E
$$

Direct searches for DM particles

LHC helps!

provided some (reasonably) weak interactions between quarks and invisible (dark) particles Illustration with searches for WIMP-signal

N.Zhou et al (2013)

CMS results of (in)direct searches @ 7 TeV

ATLAS results of (in)direct searches @ 7 TeV

CMS results of searches at @ 8 TeV

V. Khachatryan et al (2014)

Decoupling of relativistic specia (DM?)

Thermal equilibrium is forbidden:

 $T_d \gg M_X$, and then $n_X/s = \text{const}$

$$
\Omega_{3/2} = \frac{m_X \cdot n_{X,0}}{\rho_c} = \frac{m_X \cdot s_0}{\rho_c} \frac{n_{X,0}}{s_0} = 0.2 \frac{M_X}{100 \text{ eV}} \left(\frac{g_X}{2}\right) \cdot \left(\frac{100}{g_*(T_d)}\right) \cdot \frac{1}{2h^2}
$$

- If fermions: limit from Pauli-blocking
- Generally: too hot at Equality: from structure formation we need at $T_{Eq} \sim 1$ eV, $v_{DM} \lesssim 10^{-3}$

ЯN ИR

Other Dark Matter candidates are not in equilibrium!

 \bullet WIMPs (neutralino, ...) \Leftarrow thermal ! \Rightarrow Singlet scalar field:

$$
\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} S)^2 - \frac{m_0^2}{2} S^2 - \lambda S^2 H^{\dagger} H + \dots
$$

Invisible decay $H \rightarrow SS$ if kinematically allowed, missing energy

direct searches for dark matter

- **•** sterile neutrinos \Leftarrow Price: sensitive to mass and couplings! not seesaw neutrino!
- $axion \leftarrow$ Price: sensitive to mass and (=couplings) and history!
- **O** α aravitino \leftarrow Price: sensitive to mass, couplings and reheating temperature !!! yet it is natural LSP if Λ_{SUSY} ≤ 10¹⁰ GeV
- \bullet Heavy relics \leftarrow Price: sensitive to mass and untestable
- **Asymmetric WIMPS,** $n_X \neq n_{\bar{X}} \leftarrow$ No cosmic ray signals, but trapped in stars Why asymmetric? But other matter, baryons, is asymmetric. . .
- \bullet Why non-thermal DM? \leftarrow But major processes we know (recombination and nucleosymthesis) were out-of-equilibrium. . .

[Dark Matter](#page-2-0)

2 [Problems of the Big Bang Theory](#page-14-0)

ИI ЯN ИR

Big Bang within GR and SM: problems

- **o** Dark Matter
- **o** Baryogenesis
- Horizon, Enthropy, Flatness, . . . problems *l*_{*H*0}</sub> / *l*_{H,*r*}(*t*₀) ∼ $\sqrt{1+z_r}$ \simeq 30
- Singularity at the beginning
- **•** Heavy relics
-
-
-

Initial fluctuations $\delta T/T \sim \delta \rho/\rho \sim$ 10⁻⁴, scale-invariant $\mathsf{Dark} \mathsf{ Energy}$ $\mathsf{O} \neq \mathsf{\Lambda} \ll M_{Pl}^4 \ M_{W}^4 \ \mathsf{\Lambda}_{QCD}^4$ etc ? **•** Coincidence problems: $\Omega_B \sim \Omega_{DM} \sim \Omega_{\Lambda}$, $\eta_B = n_B/n_\gamma \sim \left(\delta\,T/T\right)^2\,,$ $T_d^n \sim (m_n - m_p)$,

ΛCDM tensions: lack of dwarfs? cusps? (recall: reionization @ *z* = 10)

. . .

ИI ЯN ИR

Initial singularity problem (Bang!)

$$
(Bang!)
$$

$$
\left(\frac{\dot{a}}{a}\right)^2=\frac{8\pi}{3}G\rho\,,\qquad\rho=w\rho\,,\ w>-\frac{1}{3}\qquad (?)
$$

dust: $p = 0$ singular at $t = t_s$

$$
\rho = \frac{\text{const}}{a^3}, \quad a(t) = \text{const} \cdot (t - t_s)^{2/3}, \quad \rho(t) = \frac{\text{const}}{(t - t_s)^2}
$$

$$
t_s = 0
$$
, $H(t) = \frac{\dot{a}}{a}(t) = \frac{2}{3t}$, $\rho = \frac{3}{8\pi G}H^2 = \frac{1}{6\pi G}\frac{1}{t^2}$

radiation: 1 3 singular at $t = t_s$ $\rho = \frac{\text{const}}{e^4}$ $\frac{a}{a^4}$, $a(t) = const \cdot (t - t_s)^{1/2}$, $\rho(t) = \frac{const}{(t - t_s)}$ $(t - t_s)^2$ $t_s = 0$, $H(t) = \frac{\dot{a}}{a}(t) = \frac{1}{2t}$, $\rho = \frac{3}{8\pi}$ $\frac{3}{8\pi G}H^2 = \frac{3}{32\pi}$ 32π*G* 1 *t* 2

Entropy problem

$$
\nabla_{\mu} T^{\mu 0} = 0 \longrightarrow \dot{\rho} + 3\frac{\dot{a}}{a}(\rho + \rho) = 0
$$

for equation of state

 $p = p(\rho)$

of the primordial plasma we obtain

$$
-3d(\log a) = \frac{d\rho}{\rho+\rho} = d(\log s)
$$

entropy is conserved in a comoving volume

$$
sa^3 = \text{const}
$$

For the visible part of the Universe:

At the "Bang" for the Planck-size volume:

3 *^H* [∼] ¹⁰⁸⁸ 3 *Pl* ∼ 100

Horizon problem *lH*(*t*)

a distance covered by photon emitted at $t = 0$

size of the causally connected part, that is the visible part of the Universe ("inside horison")

Flatness problem

- Take non-flat 3-dim manifold (general case)
- Curvature contribution to the total energy density behaves as $\rho_{curv}(t) \propto 1/a^2(t)$
- **•** Then at present:

$$
0.01 > \Omega_{\text{curv}} = \frac{\rho_{\text{curv}}(t_0)}{\rho_c} \sim 10^{-4} \times \frac{\rho_{\text{curv}}(t_0)}{\rho_{\text{rad}}(t_0)} = 10^{-4} \times \frac{a^2(t_0)}{a^2(t_*)} \frac{\rho_{\text{curv}}(t_*)}{\rho_{\text{rad}}(t_*)}
$$

$$
\sim 10^{-4} \times \frac{T_*^2}{T_0^2} \frac{\rho_{\text{curv}}(T_*)}{\rho_{\text{tot}}(T_*)}
$$

For hypothetical Planck epoch *^T*[∗] [∼] *^MPl* [∼] ¹⁰¹⁹ GeV one gets

$$
0.01 > \Omega_{curv} \sim 10^{60} \times \frac{\rho_{curv}\left(M_{Pl}\right)}{\rho_{tot}\left(M_{Pl}\right)}
$$

Heavy relics problem (monopole problem)

- Let's introduce new stable particle *X* of mass *M^X*
- Imagine: at moment *t^X* they appear in the early Universe with small velocities \bullet (e.g. nonrelativistic) and small density $n_X(t_X) \ll n_{rad}(t_X)$
- **O** Since $n_X \propto a^{-3} \propto n_{rad}$ $n_X(t)/n_{rad}(t) \simeq$ const

$$
\frac{\rho_X(t)}{\rho_{rad}(t)} \sim \frac{M_X}{T(t)} \cdot \frac{n_X(t_X)}{n_{rad}(t_X)} \propto a(t)
$$

- \bullet Radiation dominates at least while $1 \text{ eV} \leq T \leq 3 \text{ MeV}$
- **O** Therefore even for M_X = 10 TeV we must require $n_X(t_X)/n_{rad}(t_X) \ll 10^{-12}$!!!
- In some SM extenstions it is difficult to avoid heavy relics production: gravitational production, $M_X \sim H$, phase transitions. . .

Example: monopoles, produced "one per horizon volume", $n_X(t_X) = 1/l_H^3(t_X) = H^3(t_X)$; Then for its present contribution:

$$
\Omega_X = \frac{\rho_X}{\rho_c} \sim 10^{17}\times\frac{M_X}{10^{16}\, \text{GeV}}\left(\frac{T_X}{10^{16}\, \text{GeV}}\right)^3\sqrt{\frac{g_*}{100}}
$$

ИI ЯN ИR

- [Problems of the Big Bang Theory](#page-14-0)
- 3 [Inflationary stage](#page-22-0)
- **[Outcome for Particle Physics](#page-40-0)**

Inflationary solution of Hot Big Bang problems

- no initial singularity in dS space
- all scales grow exponentially, including the radius of the 3-sphere the Universe becomes exponentially flat
- **any two particles are** at exponentially large distances no heavy relics no traces of previous epochs!
- \bullet no particles in post-inflationary Universe to solve entropy problem we need post-inflationary reheating

Inflation: general remarks

O Simplest variant

$$
H^2 = \frac{8\pi}{3 M_{Pl}^2} \rho_{\Lambda} = \text{const}, \Rightarrow a(t) \propto e^{Ht}
$$

is not suitable: inflation must not last for ever!

Universe has to reheat after! *Treh*

$$
\rho_e \gtrsim (3 \, \text{MeV})^4
$$
, and better $\rho_e \gtrsim (100 \, \text{GeV})^4$,

● How long? Horizon problem: present size of the horizon at the end of inflation

$$
I_{H,e}(t_0) = a_0 \int_{t_{Pl}}^{t_e} \frac{dt}{a(t)} = a_0 \int_{t_{Pl}}^{t_e} \frac{da}{a^2} \frac{1}{H} \sim \frac{a_0}{a(t_{Pl})} \cdot \frac{1}{H(t_{Pl})}
$$

Solution to the horizon problem:

$$
1 \lesssim \frac{l_{H,e}(t_0)}{l_{H,0}} \sim \frac{a_0}{a(t_{Pl})} \frac{H_0}{H(t_{Pl})} = \frac{a_0}{a(t_{reh})} \frac{a_{reh}}{a(t_e)} \frac{a(t_e)}{a(t_{Pl})} \cdot \frac{H_0}{H(t_{Pl})}
$$

Introducing the number of e-foldings

$$
N_{e}^{tot} = \log \frac{a(t_e)}{a(t_{Pl})}, \quad N_{e}^{tot} = \int_{t_{Pl}}^{t_e} dt H(t) \sim H_e \cdot \Delta t_{infl}
$$

For relativistic particles $\rho \propto T^4 \propto 1/a^4 \ \Rightarrow \ a_0/a(t_{reh}) \sim T_{reh}/T_0$

Inflation: general remarks

 \bullet How long? Solution to the horizon problem:

$$
1 \lesssim \frac{I_{H,e}(t_0)}{I_{H,0}} \Rightarrow N_e^{tot} \gtrsim \log \frac{T_0}{H_0} + \log \frac{a(t_e)}{a_{reh}} + \log \frac{H(t_{Pl})}{T_{reh}} \simeq 50-60
$$

Inflation lasts not less than

 $P^2 \sim \rho/M_{Pl}^2$

$$
\Delta t_{infl} \sim N_e^{tot}/H_e \sim 10^{-11}\,c\cdot \left(\frac{\text{1 TeV}}{T_{reh}}\right)^2
$$

we must reheat the Universe then!

In realistic models $N_e^{tot} \gg 100$!!! Inflatinary stage may be short, but expansion is enormous!

Inflatinary stage: simplest models

needs superplanckian field values!

 $\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$

 $\varepsilon = \frac{M_{Pl}^2}{16\pi}$ ℓ ^{*V*} *V* $\bigg)^2$, $\eta = \frac{M_{Pl}^2}{8\pi}$ *V* 00 .
 $\frac{1}{V}$,

 $V(\phi) \propto \phi^n \Rightarrow \varepsilon, \eta \sim M_{Pl}^2/\phi^2 \ll 1 \ \leftarrow$ slow-roll conditions

"New inflation"

Initial condition is very specific!

$$
H^2 = \frac{8\,\pi}{3\,M_P^2}\,V(\phi)\;,\;\;a(t)\propto e^{Ht}
$$

and we require

$$
V(\phi) < M_{Pl}^4
$$

reheating due to percollations However: for sufficiently long inflationary stage requires $Γ < H⁴_{infl}$ hence the bubbles never collide!

and ends up in a false vacuum

does not work in fact! starts from a hot stage

Dmitry Gorbunov (INR) [Lecture #3 , 31 October 2014](#page-0-0) NTHEP & QCD School 27/43

Unexpected bonus: generation of perturbations

- \bullet Quantum fluctuations of wavelength λ of a free massless field φ have an amplitude of $δ$ φ ₂ \simeq 1/λ
- In the expanding Universe: $\lambda \propto a$ О.

inflation: $I_H \sim 1/H =$ const, so modes "exit horizon" Ordinary stage: *l^H* ∼ 1/*H* ∝ *t*, *l^H* /λ %, modes "enter horizon"

Power spectrum of perturbations

In the Minkowski space-time:

 \bullet fluctuations of a free quantum field φ are gaussian its power spectrum is defined as

$$
\int_0^\infty \frac{dq}{q} \, \mathscr{P}_{\varphi}(q) \equiv \langle \varphi^2(x) \rangle = \int_0^\infty \frac{dq}{q} \, \frac{q^2}{(2\pi)^2}
$$

We define amplitude as $\delta\varphi(q)\equiv\sqrt{\mathscr{P}_{\varphi}}=q/(2\pi)$

- **In the expanding Universe momenta** $q = k/a$ **gets redshifted**
- Cast the solution in terms $\phi(\mathbf{x},t) = \phi_c(t) + \phi(\mathbf{x},t) \,,\quad \phi(\mathbf{x},t) \propto \mathrm{e}^{\pm i \mathbf{kx}}\,\phi(\mathbf{k},t)$ φ solves the equation

$$
\ddot{\varphi} + 3H\dot{\varphi} + \frac{k^2}{a^2}\varphi + V''(\phi_c)\varphi = 0
$$

- \bullet *q* = *k*/*a* \gg *H* \Rightarrow as in Minkowski space-time
- \bullet *q* = *k*/*a* \ll *H* \Rightarrow for inflaton φ = const
- M atching at t_k : $q(t_k) = k/a(t_k) = H(t_k) \equiv H_k$ gives

$$
\delta \varphi (q) = \frac{H_k}{2 \pi} \;\Rightarrow\; \mathscr{P}_\varphi \left(q \right) = \frac{H_k^2}{(2 \, \pi)^2}
$$

amplification $H_k/q = e^{N_e(k)}$!!!

 $H_k \approx \text{const} = H_{infl}$ hence (almost) flat spectrum

Transfer to matter perturbations: simple models

Illustration: Local delay(advance)δ*t* in evolution due to impact of $\delta \phi$ of all modes with $\lambda > H$:

$$
\delta\phi=\dot{\phi}_c\,\delta t\,,\quad \delta\rho\sim\dot{\rho}\,\delta t
$$

at the end of inflation $\dot{\rho} \sim -H\rho$, then

$$
\frac{\delta \rho}{\rho} \sim \frac{H}{\dot{\phi}_c} \, \delta \phi
$$

Hence, $\delta \rho / \rho$ is also gaussian. Power spectrum of scalar perturbations

$$
\mathscr{P}_{\mathscr{R}}(k) = \left(\frac{H^2}{2\pi\dot{\phi}_c}\right)^2\,,
$$

 e verything is calculated at $t = t_k : H = k/a$

$$
\mathscr{P}_T(k) = \frac{16}{\pi} \, \frac{H_k^2}{M_{Pl}^2}
$$

To the leading order no *k*-dependence: both spectra are "flat" (scale-invariant)!

Inflaton parameters and spectral parameters

Observation of CMB anisotropy gives δ*T*/*T*

$$
\frac{\delta T}{T} \sim \frac{\delta \rho}{\rho} \Rightarrow \Delta_{\mathscr{R}} \equiv \sqrt{\mathscr{P}_{\mathscr{R}}} = 5 \times 10^{-5}
$$

- These are so-called adiabatic perturbations! Other possibles (isocurvature) modes (e.g. $\delta T = 0$, but $\delta n_B/n_B \neq 0$) are not found.
- $\Delta \omega = 5 \times 10^{-5} \Rightarrow$ fixes model paramaters, e.g.:

$$
V(\phi) = \frac{\beta}{4} \phi^4 \rightarrow \lambda \sim 10^{-13}
$$

With such a tiny coupling perturbations are obviously gaussian So far confirmed by observations

That's why Higgs boson in the SM does not help! However, it can be exploited as inflaton if non-minimally coupled to gravity ξ *RH*†*H*

Critical point: where EW-vacuum becomes unstable

G. Degrassi et al (2012) $m_h^{\text{cr}} > \left[129.0 + \frac{m_t - 172.9 \text{GeV}}{1.1 \text{GeV}} \times 2.2 - \frac{\alpha_{\text{s}}(M_Z) - 0.1181}{0.0007} \times 0.56 \right]$ GeV

theoretical uncertainties 1-2 GeV present measurements at CMS and ATLAS (?):

 $m_h \simeq 125.8 \pm 0.9$ GeV

Important for inflation, when usually *h* ∼ *H*

Higgs mass M_h =124 GeV

Dmitry Gorbunov (INR) [Lecture #3 , 31 October 2014](#page-0-0) NTHEP & QCD School 32 / 43

Inflation & Reheating: simple realization with Higgs

$$
\ddot{X}+3H\dot{X}+V'(X)=0
$$

 $X_e > M_{Pl}$

generation of scale-invariant scalar (and tensor) perturbations from exponentially stretched quantum fluctuations of *X*

 $\delta \rho / \rho \sim 10^{-5}$ requires *V* = β*X*⁴ : β ~ 10⁻¹³

reheating ? renormalizable? the only choice: α _H[†] μ X² "Higgs portal"

Chaotic inflation, A.Linde (1983)

ИI ЯN ИR

larger α larger *Treh* quantum corrections $\propto \alpha^2 \lesssim \beta$

No scale, no problem

Inflaton parameters and spectral parameters

• In fact, spectra are a bit tilted, as H_{infl} slightly evolves

$$
\mathscr{P}_{\mathscr{R}}(k) = A_{\mathscr{R}}\left(\frac{k}{k_*}\right)^{n_s-1}, \qquad \mathscr{P}_{\mathcal{T}}(k) = A_{\mathcal{T}}\left(\frac{k}{k_*}\right)^{n_{\mathcal{T}}}
$$

- Measure $\Delta_{\mathscr{R}}$ at present scales $q \simeq 0.002/Mpc$, it fixes the number of e-foldings left *N^e*
- For tensor perturbations one introduces:

$$
r \equiv \frac{\mathcal{P}_T}{\mathcal{P}_{\mathcal{R}}} = \frac{1}{\pi} \frac{M_{Pl}^2 V^{\prime 2}}{V} = 16 \,\epsilon \rightarrow \frac{16}{N_e} \text{ for } \beta \phi^4
$$

.

Recent analysis (Planck) of cosmlogical data

 $N_e = 50 - 60$

Actually we observe rather narrow range

CMB map

Dmitry Gorbunov (INR) Lecture #3, 31 October 2014 NTHEP & QCD School 37 / 43

ИI ЯN ИR

ИI ЯN ИR

Mode evolution

- Amplitude remains constant, while superhorizon, e.g. *k*/*a* < *H*
- **■** Subhorizon Inhomogeneities of DM start to grow at MD-stage, $\delta \rho_{CDM}/\rho_{CDM} \propto a$ from $T \approx 0.8$ eV Smaller objects (first stars, dwarf galaxies) are first to form
- Subhorizon Inhomogeneities of baryons join those of DM only after recombination, $δρ_{CDM}/ρ_{CDM} ≈ a from T_{rec} ≈ 0.25 eV$
- \bullet at recombination δ $\rho_B/\rho_B \sim \delta T/T \sim 10^{-4}$ and would grow only by a factor $T_{rec}/T_0 \sim 10^3$ without DM
- **Subhorizon Inhomogeneities of photons** $\delta \rho_{\gamma}/\rho_{\gamma}$ **oscillate with constant amplitude at RD** and with decreasing amplitude at MD, thus we can measure *TRD*/*MD*/*Trec*
- **•** Phase of oscillations decoupled after recombination depends on the wave-length, recombination time and sound speed

$$
\delta \rho_\gamma / \rho_\gamma \propto \cos \left(k \int_0^{t_r} \frac{v_s \, dt}{a(t)} \right) = \cos (k l_{sound})
$$

$$
\delta T(\theta,\varphi) = \sum a_{lm} Y_{lm}(\theta,\varphi) , \qquad \qquad \langle a_{lm}^* a_{lm} \rangle = C_l \equiv 2\pi \mathcal{D}_l/ (l(l+1))
$$

Ο

On top of that: propagation in expanding Universe

Dmitry Gorbunov (INR) Lecture #3, 31 October 2014 NTHEP & QCD School 39 / 43

CMB measurements (Planck) *H*₀, Ω_{*DM*}, Ω_{*B*}, Ω_Λ, Δ_{*ℛ*}, *n*_s

- [Problems of the Big Bang Theory](#page-14-0)
- [Inflationary stage](#page-22-0)

ИI ЯN ИR

ИI ЯN ИR

CMB, LSS and Neutrinos

Evolution of perturbations depends both on $N_{v,eff}$ and $\sum m_v$

- active neutrinos contribute to radiation at early stage, and to DM today
- active neutrinos fall into galaxy clusters, but not into dwarfs (too hot)

- . . .

Cosmology is sensitive to active neutrino mass scale, and to additional light neutrinos (e.g. to explain anomalies in some neutrino oscillation experiments) Planck promised to probe inverted hierarchy scenario

New physics from the (still unknown) Higgs sector

- EW baryogenesis: not enough CP, not I order phase transition could be 2 Higgs doublets!
- **O** Dark Matter candidate: stable due to *Z*₂-symmetry Natural CDM from primordial plasma Singlet scalar field: (e.g. Burgess, Pospelov, ter Veldhuis, 2001)

$$
\mathcal{L} = \mathcal{L}_{SM} + \frac{1}{2}(\partial_{\mu}S)^{2} - \frac{m_0^{2}}{2}S^{2} - \lambda S^{2}H^{\dagger}H + ...
$$

may be responsible for reheating

- **•** One of the SM portals to hidden sectors (SM-gauge singlets: no FCNC!) $\beta B^{\mu\nu}_{U(1)_Y} B^{\mu\nu}_{U(1)_{Y'}}$ α*H* †*^H* ·*^X* †*X*
- Cosmology asks for precision measurement of m_t , m_h and α_s : Higgs must evolve to EW vacuum

(and may even drive inflation, if $\lambda(M_{Pl}) > 0$)

