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Dark Matter Properties p = 0

(If) particles:
1 stable on cosmological time-scale
2 nonrelativistic long before RD/MD-transition (either Cold or

Warm, vRD/MD . 10−3)
3 (almost) collisionless
4 (almost) electrically neutral

If were in thermal equilibrium: MX & 1 keV
If not: for bosons
λ = 2π/(MXvX), in a galaxy vX ∼ 0.5 ·10−3 −→MX & 3 ·10−22 eV

for fermions
Pauli blocking: MX & 750 eV

f (p,x) =
ρX(x)

MX
· 1(√

2πMXvX

)3 ·e
− p2

2M2
Xv2

X

∣∣∣∣∣
p=0

≤ gX

(2π)3
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Dark Matter Candidates

WIMPs (neutralino, . . . )
sterile neutrinos
gravitino
axion
Heavy relics
(Topological) defects
Massive Astrophysical Compact Halo Objects
Primordial black hole remnants
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Weakly Interacting Massive Particles

Assumptions:
1 no X − X̄ asymmetry nX = nX̄

2 @ T < MX in thermal equilibrium with plasma

nX = nX̄ = gX

(
MXT
2π

)3/2

e−MX/T

XX̄ −→ light particles

freeze-out temperature Tf M∗Pl = MPl/1.66
√

g∗

1
nX

1
〈σannv〉 = H−1(Tf )−→ Tf =

MX

log
(

gXMXM∗Plσ0

(2π)3/2

) .

Bethe formula: annihilation in s-wave: σann = σ0
v
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Weakly Interacting Massive Particles (WIMPs)

density after freeze-out: nX(Tf ) =
T 2

f
M∗Pl σ0

present density: nX(T0) =
(

a(Tf )
a(T0)

)3
nX(Tf ) =

(
s0

s(Tf )

)
nX(Tf ) ∝

1
Tf

∝
1

MX

X + X̄ contribution to critical density:

ΩX = 2
MXnX(T0)

ρc
= 7.6

s0 log
(

gXM∗PlMXσ0

(2π)3/2

)
ρcσ0MPl

√
g∗(Tf )

= 0.1 ·
(

(10 TeV)−2

σ0

)
0.3√
g∗(Tf )

log

(
gXM∗PlMXσ0

(2π)3/2

)
· 1
2h2

natural dark matter: σ0 ∼ 0.01×σweak

naturaly “light” σ0 .
4π

M2
X
−→ MX . 100 TeV
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WIMPs are mostly welcome

Do not need new physical scale (and interaction?)
Can search for WIMPs in collision experiments (LHC):

X + X̄ ↔ SM + SM’ + . . .

Can search for WIMPs in cosmic rays: products of WIMPs
annihilation (in Galactic center, dwarf galaxies, Sun)

X + X̄ → pp̄ , e+e− , ν ,γ, . . .

Direct searches for Galactic Dark Matter (v ∼ 10−3)

X + nuclei→ X + nuclei + ∆E
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Direct searches for DM particles

LHC helps!
provided some (reasonably) weak interactions between quarks and invisible (dark) particles

Illustration with searches for WIMP-signal

χ

χ̄

q

q̄

g, γ, Z, or W

N.Zhou et al (2013)
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CMS results of (in)direct searches @ 7 TeV
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ATLAS results of (in)direct searches @ 7 TeV
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CMS results of searches at @ 8 TeV

V. Khachatryan et al (2014)
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Decoupling of relativistic specia (DM?)

Thermal equilibrium is forbidden:
Td �MX , and then nX/s = const

Ω3/2 =
mX ·nX ,0

ρc
=

mX ·s0

ρc

nX ,0

s0
= 0.2

MX

100 eV

(gX

2

)
·
(

100
g∗(Td )

)
.

1
2h2

If fermions: limit from Pauli-blocking
Generally: too hot at Equality:
from structure formation we need at TEq ∼ 1 eV, vDM . 10−3
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Other Dark Matter candidates are not in equilibrium!

WIMPs (neutralino, . . . ) ⇐= thermal ! =⇒ Singlet scalar field:

L = LSM +
1
2

(∂µ S)2− m2
0

2
S2−λS2H†H + ...

Invisible decay H→ SS if kinematically allowed, missing energy

direct searches for dark matter

sterile neutrinos ⇐= Price: sensitive to mass and couplings! not seesaw neutrino!

axion ⇐= Price: sensitive to mass and (=couplings) and history!

gravitino ⇐= Price: sensitive to mass, couplings and reheating temperature !!! yet it is

natural LSP if ΛSUSY . 1010 GeV

Heavy relics ⇐= Price: sensitive to mass and untestable

Asymmetric WIMPS, nX 6= nX̄ ⇐= No cosmic ray signals, but trapped in stars

Why asymmetric? But other matter, baryons, is asymmetric. . .
Why non-thermal DM? ⇐= But major processes we know (recombination and

nucleosymthesis) were out-of-equilibrium. . .
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Big Bang within GR and SM: problems

Dark Matter
Baryogenesis
Horizon, Enthropy, Flatness, . . . problems
lH0/lH,r (t0)∼

√
1 + zr ' 30

Singularity at the beginning
Heavy relics
Initial fluctuations δT/T ∼ δρ/ρ ∼ 10−4, scale-invariant
Dark Energy 0 6= Λ�M4

Pl M4
W Λ4

QCD etc ?
Coincidence problems: ΩB ∼ ΩDM ∼ ΩΛ ,

ηB = nB/nγ ∼ (δT/T )2 ,
T n

d ∼ (mn−mp) ,
. . .

ΛCDM tensions: lack of dwarfs? cusps? (recall: reionization @ z = 10)
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TODAY2.7 K 14 by
accelerated expansion

4.4 K matter domination 7.7 by

0.26 eV recombination 370 ty e + p→ H + γ

matter domination
0.8 eV 50 ty

radiation domination

50 keV 5 min 3H + 4He→ 7Li + γ

primordial nucleosynthesis 2H + 2H→ n + 3He

1 MeV 1 s p + p→ 2H + γ

neutrino decoupling2.5 MeV 0.1 s

QCD transition confinement↔free quarks200 MeV 10 µs

Electroweak phase transition100 GeV 0.1 ns

hot Universe

reheating

inflation

dark matter production

baryogenesis
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Initial singularity problem (Bang!)

(
ȧ
a

)2
=

8π

3
Gρ , p = wρ , w >−1

3
(?)

dust: p = 0 singular at t = ts

ρ =
const

a3 , a(t) = const · (t− ts)2/3 , ρ(t) =
const

(t− ts)2

ts = 0 , H(t) =
ȧ
a

(t) =
2
3t

, ρ =
3

8πG
H2 =

1
6πG

1
t2

radiation: p = 1
3ρ singular at t = ts

ρ =
const

a4 , a(t) = const · (t− ts)1/2 , ρ(t) =
const

(t− ts)2

ts = 0 , H(t) =
ȧ
a

(t) =
1
2t

, ρ =
3

8πG
H2 =

3
32πG

1
t2
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Entropy problem

∇µT µ0 = 0 −→ ρ̇ + 3
ȧ
a

(ρ + p) = 0

for equation of state
p = p(ρ)

of the primordial plasma we obtain

−3d(loga) =
dρ

p + ρ
= d(logs)

entropy is conserved in a comoving volume

sa3 = const

For the visible part of the Universe: S ∼ sγ,0 · l3H ∼ 1088

At the “Bang” for the Planck-size volume: SBB ∼ sγ,0 · l3Pl ∼ 100
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Horizon problem lH(t)

a distance covered by photon emitted at t = 0

size of the causally connected part, that is the visible part of the
Universe (“inside horison”)

ds2 = dt2−a2 (t)dx2 = a2 (η)
(
dη2−dx2) ds2 = 0

lH(t) =a(t)
∫

dx=a(t)
∫

dη=a(t)
∫ t

0

c dt ′

a(t ′)
∝ t ∝ 1/H(t)

a(t) ∝ tα , 0 < α < 1 , Lphys ∝ a

lH0/lH,r (t0)∼ lH0/lH,r (tr )a(tr )/a0 ∼ Hr/H0 a(tr )/a0 ∼
√

1 + zr ' 30
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Flatness problem

Take non-flat 3-dim manifold (general case)

Curvature contribution to the total energy density behaves as
ρcurv (t) ∝ 1/a2 (t)

Then at present:

0.01 > Ωcurv =
ρcurv (t0)

ρc
∼ 10−4× ρcurv (t0)

ρrad (t0)
= 10−4× a2 (t0)

a2 (t∗)
ρcurv (t∗)
ρrad (t∗)

∼ 10−4× T 2
∗

T 2
0

ρcurv (T∗)
ρtot (T∗)

For hypothetical Planck epoch T∗ ∼MPl ∼ 1019 GeV one gets

0.01 > Ωcurv ∼ 1060× ρcurv (MPl )

ρtot (MPl )
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Heavy relics problem (monopole problem)

Let’s introduce new stable particle X of mass MX

Imagine: at moment tX they appear in the early Universe with small velocities
(e.g. nonrelativistic) and small density nX (tX )� nrad (tX )

Since nX ∝ a−3 ∝ nrad then nX (t)/nrad (t)' const

ρX (t)
ρrad (t)

∼ MX
T (t)

· nX (tX )

nrad (tX )
∝ a(t)

Radiation dominates at least while 1 eV. T . 3 MeV
Therefore even for MX = 10 TeV we must require nX (tX )/nrad (tX )� 10−12 !!!
In some SM extenstions it is difficult to avoid heavy relics production:
gravitational production, MX ∼ H, phase transitions. . .

Example: monopoles, produced “one per horizon volume”,
nX (tX ) = 1/l3H (tX ) = H3 (tX ); Then for its present contribution:

ΩX =
ρX
ρc
∼ 1017× MX

1016 GeV

(
TX

1016 GeV

)3√ g∗
100
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Inflationary solution of Hot Big Bang problems

no initial singularity in
dS space

all scales grow
exponentially,
including the radius of
the 3-sphere
the Universe becomes
exponentially flat

any two particles are
at exponentially large
distances
no heavy relics
no traces of previous
epochs!

no particles in
post-inflationary
Universe
to solve entropy
problem we need
post-inflationary
reheating

co
nf

or
m

al
tim

e
space coordinate

particle
horizon

casually
connected
regions

co
nf

or
m

al
tim

e

space coordinate

inflationary
expansion
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Inflation: general remarks
Simplest variant

H2 =
8π

3M2
Pl

ρΛ = const , ⇒ a(t) ∝ eHt

is not suitable: inflation must not last for ever!
Universe has to reheat after! Treh

ρe & (3MeV)4 , and better ρe & (100GeV)4 ,

How long? Horizon problem:
present size of the horizon at the end of inflation

lH,e (t0) = a0

∫ te

tPl

dt
a(t)

= a0

∫ te

tPl

da
a2

1
H
∼ a0

a(tPl )
· 1

H(tPl )

Solution to the horizon problem:

1 .
lH,e (t0)

lH,0
∼ a0

a(tPl )

H0

H(tPl )
=

a0

a(treh)

areh

a(te)

a(te)

a(tPl )
· H0

H(tPl )

Introducing the number of e-foldings

N tot
e = log

a(te)

a(tPl )
, N tot

e =
∫ te

tPl

dt H(t)∼ He ·∆tinfl

For relativistic particles ρ ∝ T 4 ∝ 1/a4 ⇒ a0/a(treh)∼ Treh/T0
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Inflationary stage
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Inflation: general remarks

How long? Solution to the horizon problem:

1 .
lH,e (t0)

lH,0
⇒ N tot

e & log
T0

H0
+ log

a(te)

areh
+ log

H(tPl )

Treh
' 50−60

Inflation lasts not less than (accepting H2 ∼ ρ/M2
Pl )

∆tinfl ∼ N tot
e /He ∼ 10−11 c ·

(
1 TeV
Treh

)2

we must reheat the Universe then!

In realistic models N tot
e ≫ 100 !!!

Inflatinary stage may be short, but expansion is enormous!
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Inflatinary stage: simplest models

“Old inflation” by Guth

does not work in fact!
starts from a hot stage

and ends up in a false vacuum
reheating due to percollations
However: for sufficiently long
inflationary stage requires
Γ < H4

infl

hence the bubbles never
collide!

“Chaotic inflation”

needs superplanckian field
values!

ρ =
1
2

φ̇
2+V (φ)

p =
1
2

φ̇
2−V (φ)

φ̈+3Hφ̇ + V ′ (φ) = 0

ε =
M2

Pl
16π

(
V ′

V

)2

, η =
M2

Pl
8π

V ′′

V
,

V (φ) ∝ φ
n ⇒ε,η ∼M2

Pl/φ
2� 1

“New inflation”

Initial condition is very specific!

H2 =
8π

3M2
P

V (φ) , a(t) ∝ eHt

and we require

V (φ) < M4
Pl

← slow-roll conditions
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Unexpected bonus: generation of perturbations

Quantum fluctuations of wavelength λ of a free massless field ϕ have an amplitude of
δϕλ ' 1/λ

In the expanding Universe: λ ∝ a

inflation: lH ∼ 1/H = const, so modes “exit horizon”
Ordinary stage: lH ∼ 1/H ∝ t , lH/λ ↗, modes “enter horizon”

Evolution at inflation

inside horizon: λ < lH
λ ∝ a⇒ δϕλ ∝ 1/λ ∝ 1/a

outside horison: λ > lH
λ ∝ a⇒ δϕλ = const = Hinfl !!!

got “classical” fluctuations:
δϕλ = δϕ

quantum
λ

×eNe
inflation RD, MD epochs

H(t)

q(t)=
a(t)

k

tte

inside
horizon

inside
horizon

outside
horizon
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Inflationary stage
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Power spectrum of perturbations
In the Minkowski space-time:

fluctuations of a free quantum field ϕ are gaussian its power spectrum is defined as

∫
∞

0

dq
q

Pϕ (q)≡ 〈ϕ2(x)〉=
∫

∞

0

dq
q

q2

(2π)2

We define amplitude as δϕ(q)≡
√

Pϕ = q/(2π)

In the expanding Universe momenta q = k/a gets redshifted

Cast the solution in terms φ(x, t) = φc(t) + ϕ(x, t) , ϕ(x, t) ∝ e±ikx ϕ(k, t)
ϕ solves the equation

ϕ̈ + 3Hϕ̇ +
k2

a2 ϕ + V ′′ (φc)ϕ = 0

q = k/a� H ⇒ as in Minkowski space-time

q = k/a� H ⇒ for inflaton ϕ = const

Matching at tk : q(tk ) = k/a(tk ) = H(tk )≡ Hk gives

δϕ(q) =
Hk

2π
⇒ Pϕ (q) =

H2
k

(2π)2 amplification Hk/q = eNe(k) !!!

Hk ≈ const = Hinfl hence (almost) flat spectrum
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Inflationary stage
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Transfer to matter perturbations: simple models

Illustration: Local delay(advance)δ t in evolution
due to impact of δφ of all modes with λ > H:

δφ = φ̇c δ t , δρ ∼ ρ̇ δ t

at the end of inflation ρ̇ ∼−Hρ, then

δρ

ρ
∼ H

φ̇c
δφ

Hence, δρ/ρ is also gaussian.
Power spectrum of scalar perturbations

PR(k) =

(
H2

2π φ̇c

)2

,

everything is calculated at t = tk : H = k/a

Analogously for the tensor perturbations:
each of the two polarizations of the gravity
waves solves the free scalar field equation!

PT (k) =
16
π

H2
k

M2
Pl

To the leading order no k -dependence: both spectra are “flat” (scale-invariant)!
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Inflaton parameters and spectral parameters

Observation of CMB anisotropy gives δT/T

δT
T
∼ δρ

ρ
⇒∆R ≡

√
PR = 5×10−5

These are so-called adiabatic perturbations!
Other possibles (isocurvature) modes (e.g. δT = 0, but δnB/nB 6= 0) are not found.

∆R = 5×10−5 ⇒ fixes model paramaters, e.g.:

V (φ) =
β

4
φ

4→ λ ∼ 10−13

With such a tiny coupling perturbations are obviously gaussian
So far confirmed by observations

That’s why Higgs boson in the SM does not help!
However, it can be exploited as inflaton if non-minimally coupled to gravity ξ RH†H
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Critical point: where EW-vacuum becomes unstable
Strong coupling

Zero

MFermi MPlanck

Scale Μ

Mh=mmin

Mh=mmax

signHΛL Λ

F.Bezrukov, M.Shaposhnikov (2009)
F.Bezrukov, D.G. (2011)
F.Bezrukov, M.Kalmykov, B.Kniehl, M.Shaposhnikov (2012)

G. Degrassi et al (2012)

mcr
h >

[
129.0 +

mt −172.9GeV
1.1GeV

×2.2− αs(MZ )−0.1181
0.0007

×0.56
]

GeV

theoretical uncertainties 1-2 GeV

present measurements at CMS and ATLAS (?):

mh ' 125.8±0.9 GeV

Important for inflation, when usually h ∼ H
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Dmitry Gorbunov (INR) Lecture #3 , 31 October 2014 NTHEP & QCD School 32 / 43



Inflationary stage
ИI
ЯN
ИR

Inflation & Reheating: simple realization with Higgs

Ẍ+3HẊ + V ′ (X ) = 0

Xe > MPl

generation of scale-invariant scalar (and
tensor) perturbations from exponentially
stretched quantum fluctuations of X

δρ/ρ ∼ 10−5 requires
V = βX 4 : β ∼ 10−13

reheating ? renormalizable?

the only choice: αH†HX 2

“Higgs portal”

X

Chaotic inflation, A.Linde (1983)

larger α larger Treh

quantum corrections ∝ α2 . β

No scale, no problem
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Inflaton parameters and spectral parameters

In fact, spectra are a bit tilted, as Hinfl slightly evolves

PR(k) = AR

(
k
k∗

)ns−1

, PT (k) = AT

(
k
k∗

)nT

.

Measure ∆R at present scales q ' 0.002/Mpc, it fixes the number
of e-foldings left Ne

For tensor perturbations one introduces:

r ≡ PT

PR
=

1
π

M2
Pl V

′2

V
= 16ε → 16

Ne
for βφ

4
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Recent analysis (Planck) of cosmlogical data
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Actually we observe rather narrow range

Observable range:

kmax

kmin
∼ 105

∆Ne ' 10

Small scales cannot
describe:
for a long time in
nonlinear regime
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CMB map

Dmitry Gorbunov (INR) Lecture #3 , 31 October 2014 NTHEP & QCD School 37 / 43



Inflationary stage
ИI
ЯN
ИR

Mode evolution

Amplitude remains constant, while superhorizon, e.g. k/a < H

Subhorizon Inhomogeneities of DM start to grow at MD-stage, δρCDM/ρCDM ∝ a from
T ≈ 0.8 eV
Smaller objects (first stars, dwarf galaxies) are first to form

Subhorizon Inhomogeneities of baryons join those of DM only after recombination,
δρCDM/ρCDM ∝ a from Trec ≈ 0.25 eV

at recombination δρB/ρB ∼ δT/T ∼ 10−4 and would grow only by a factor Trec/T0 ∼ 103

without DM

Subhorizon Inhomogeneities of photons δργ/ργ oscillate with constant amplitude at RD
and with decreasing amplitude at MD, thus we can measure TRD/MD/Trec

Phase of oscillations decoupled after recombination depends on the wave-length,
recombination time and sound speed

δργ/ργ ∝ cos
(

k
∫ tr

0

vs dt
a(t)

)
= cos(klsound )

δT (θ ,ϕ) = ∑almYlm(θ ,ϕ) , 〈a∗lmalm〉= Cl ≡ 2πDl/(l(l + 1))
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On top of that: propagation in expanding Universe
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CMB measurements (Planck) H0,ΩDM ,ΩB,ΩΛ,∆R,ns
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Outline

1 Dark Matter

2 Problems of the Big Bang Theory

3 Inflationary stage

4 Outcome for Particle Physics
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CMB, LSS and Neutrinos
Evolution of perturbations depends both on Nν ,eff and ∑mν

- active neutrinos contribute to radiation at early stage, and to DM today
- active neutrinos fall into galaxy clusters, but not into dwarfs (too hot)
- . . .
Cosmology is sensitive to active neutrino mass scale, and to additional light neutrinos (e.g. to
explain anomalies in some neutrino oscillation experiments)
Planck promised to probe inverted hierarchy scenario

m
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solar~8×10−3eV

atmospheric

~4×10−2eV
atmospheric

~4×10−2eV
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m
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m3
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ντ
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. 10−5 eV
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9 ·10−3 eV

4.8 ·10−2 eV

normal inverted
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New physics from the (still unknown) Higgs sector

EW baryogenesis:
not enough CP, not I order phase transition
could be 2 Higgs doublets!
Dark Matter candidate: stable due to Z2-symmetry
Natural CDM from primordial plasma
Singlet scalar field: (e.g. Burgess, Pospelov, ter Veldhuis, 2001)

L = LSM +
1
2

(∂µS)2− m2
0

2
S2−λS2H†H + ...

may be responsible for reheating

One of the SM portals to hidden sectors (SM-gauge singlets: no FCNC!)

βBµν

U(1)Y
Bµν

U(1)Y ′
αH†H ·X †X

Cosmology asks for precision measurement of mt , mh and αs :
Higgs must evolve to EW vacuum

(and may even drive inflation, if λ (MPl ) > 0)
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