Exclusive photoproduction of quarkonia in pp, AA and pA collisions at the LHC

Magno V.T. Machado

Instituto de Fisica - UFRGS, Brazil High Energy Phenomenology Group. Porto Alegre

Outline

- Short motivation
- Ultra-Peripheral Collisions of heavy ions and nucleons
- Quarkonium production in UPCs
- Model for photoproduction cross sections color dipole approach
- Results for exclusive J/ψ and $\psi(2S)$ production in pp
- Results for exclusive J/ψ and $\psi(2S)$ production in AA
- ullet Results for exclusive $\psi(1S,2S)$ and $\Upsilon(1S)$ production in pA
- Summary.

Motivation

- UPCs are defined as collisions in which no hadronic interactions occur due to large spatial separation between projectile and target.
- Interactions are mediated by the electromagnetic field.
- One type of UPC is the photonuclear interactions, in which a photon from the projectile interacts with the hadronic component of target.
- Good reasons to study electromagnetic interactions at hadron colliders:
 - (1) Range of accessible photon energies are strongly increased at the LHC and the equivalent luminosities are higher than at existing electron colliders.
 - (2) Using nuclear beams effects of very strong fields can be studied (small-x physics, nuclear shadowing, ...).

Motivation

- Concerning quarkonium production in UPCs, if the photon spectrum is known, $d\sigma/dy$ is a direct measure of the meson photoproduction cross section for a given photon energy.
- In the LHC (PbPb mode) the photon energies for production around mid-rapidity correspond to a gluon x-values of 6×10^{-4} for J/Ψ production and 2×10^{-3} for Υ production. Lower values of x are reached away from mid-rapidity.
- In Pbp mode, for J/ψ at $y \simeq -3$ corresponds to a gluon x-value $x_A \simeq 5 \times 10^{-4}$ and $x_p \simeq 10^{-2}$.
- Experimental feasibility of studying exclusive meson production in UPCs has been demonstrated at LHC and supported by previous experience at RHIC.
- Large theoretical uncertainties, mainly for the photonuclear crosss section.

UPCs of heavy ions

- The electromagnetic field of a relativistic particle corresponds to an equivalent flux of photons.
- In the case of interaction between two nuclei, in general the photon spectrum is computed as a function of impact parameter in a semi-classical approach.
- ▶ Thus, interactions where the nuclei interact strongly can be excluded (roughly speaking, considering $b > 2R_A$).
- We consider an analytical expression for photon spectrum:

$$\frac{dn_{\gamma}}{dk} = \frac{2Z^{2}\alpha_{em}}{\pi k} \left[\xi K_{0}(\xi) K_{1}(\xi) + \frac{\xi^{2}}{2} \left(K_{1}^{2}(\xi) - K_{0}^{2}(\xi) \right) \right],$$

• The photon energy is k and $\xi = 2kR_A/\gamma_L$.

Photoproduction in pp collisions

In pp case, the photon energy spectrum is given by a modified version of Wiezsäcker-Williams approximation:

$$\frac{dn_{\gamma}}{dk} = \frac{\alpha_{em}}{2\pi k} \left[1 + \left(1 - \frac{2k}{\sqrt{s}} \right)^2 \right] \left(\ln \xi - \frac{11}{6} + \frac{3}{\xi} - \frac{3}{2\xi^2} + \frac{1}{3\xi^3} \right)$$

- Photon energy is k and \sqrt{s} is the hadron-hadron centre-of-mass energy.
- Given the Lorentz factor of a single beam, $\gamma_L=\sqrt{s}/(2m_p)$, one has that $\xi=1+(Q_0^2/Q_{\min}^2)$ with $Q_0^2=0.71~{\rm GeV}^2$ and $Q_{\min}^2=k^2/\gamma_L^2$.

Quarkonium photoproduction in pp

- The rapidity y of the produced vector meson is related to its mass M_V and the photon energy through $k=(M_V/2)\exp(y)$.
- The rapidity distribution can be obtained as

$$\frac{d\sigma(pp \to pp + V)}{dy} = S_{\text{gap}}^2 \left[k_1 \frac{dn_{\gamma}}{dk_1} \sigma_{\gamma p \to Vp}(k_1) + k_2 \frac{dn_{\gamma}}{dk_2} \sigma_{\gamma p \to Vp}(k_2) \right]$$

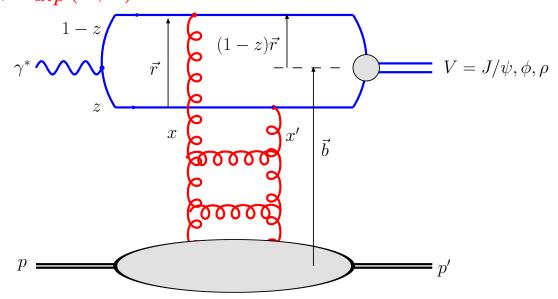
- ▶ Here, $k_{1,2} = (M_V/2) \exp(\pm y)$. At mid-rapidity, $k_1 = k_2$ and the contributions from the two terms are equal.
- The square of the γp centre-of-mass energy is given by $W_{\gamma p}^2 \simeq 2k\sqrt{s}$.
- The absorptive corrections due to spectator interactions between the two hadrons are represented by the factor S_{gap} .

Model for photoproduction cross section

• We consider the color dipole approach to compute the photoproduction cross section (valid for $x \lesssim 10^{-2}$).

$$\mathcal{A}(\gamma p \to V p) = -i \int dz \, d^2 \mathbf{r} \, \Psi_V^*(z, r) \, \sigma_{dip}(\mathbf{x}, \mathbf{x'}, \mathbf{r}) \, \Psi_{\gamma}(z, r, Q^2)$$

• The basic quantities are the photon and vector meson wavefunction (Ψ_{γ} and Ψ_{V}) as well as the dipole-target cross section, $\sigma_{dip}(x,r)$.



Model for photoproduction cross section

The cross section for exclusive production of charmonia off a nucleon target is given by:

$$\sigma_{\gamma^* p \to V p}(s, Q^2) = \frac{1}{16\pi B_V} \left| \mathcal{A}(x, Q^2, \Delta = 0) \right|^2$$

• B_V is the diffractive slope parameter in the reaction $\gamma^* p \to V p$. Here, we consider the energy dependence of the slope using the Regge motivated expression:

$$B_V(W_{\gamma p}) = b_{el}^V + 2\alpha' \log \left(\frac{W_{\gamma p}}{W_0}\right)^2$$

$$\alpha' = 0.25 \, GeV^{-2} \text{ and } W_0 = 90 \, GeV$$

• We used measured slopes at $W_{\gamma p}=90$ GeV, i.e. $b_{el}^{\psi(1S)}=4.99\pm0.41$ GeV $^{-2}$ and $b_{el}^{\psi(2S)}=4.31\pm0.73$ GeV $^{-2}$ (H1@HERA).

Model for the meson wavefunction

We consider the boosted gaussian wavefunction:

$$\psi_{\lambda,h\bar{h}}^{nS} = \sqrt{\frac{N_c}{4\pi}} \frac{\sqrt{2}}{z(1-z)} \left\{ \delta_{h,\bar{h}} \delta_{\lambda,2h} m_c + i(2h) \delta_{h,-\bar{h}} e^{i\lambda\phi} \right.$$

$$\times \left[(1-z)\delta_{\lambda,-2h} + z\delta_{\lambda,2h} \right] \partial_r \left. \right\} \phi_{nS}(z,r)$$

 \blacksquare For the 1S state one has explicitly:

$$\phi_{1S}(r,z) = N_T^{(1S)} \left\{ 4z(1-z)\sqrt{2\pi R_{1S}^2} \exp\left[-\frac{m_q^2 R_{1S}^2}{8z(1-z)}\right] \times \exp\left[-\frac{2z(1-z)r^2}{R_{1S}^2}\right] \exp\left[\frac{m_q^2 R_{1S}^2}{2}\right] \right\}$$

Parameters (R_{1S}^2, N_T) obtained using the normalization property of wavefunctions and the predicted decay widths.

Model for the meson wavefunction

• The radial wavefunction of the $\psi(2S)$ is obtained by the following modification of the 1S state:

$$\phi_{2S}(r,z) = N_T^{(2S)} \left\{ 4z(1-z)\sqrt{2\pi R_{2S}^2} \exp\left[-\frac{m_q^2 R_{2S}^2}{8z(1-z)}\right] \right.$$

$$\times \exp\left[-\frac{2z(1-z)r^2}{R_{2S}^2}\right] \exp\left[\frac{m_q^2 R_{2S}^2}{2}\right]$$

$$\times \left[1-\alpha\left(1+m_q^2 R_{2S}^2-\frac{m_q^2 R_{2S}^2}{4z(1-z)}+\frac{4z(1-z)}{R_{2S}^2}r^2\right)\right] \right\}$$

• Parameters α and R_{2S} are constrained from the orthogonality conditions for the meson wavefunction.

Dipole-proton cross section

We take parameterization based on the saturation physics [lancu-ltakura-Munier, PLB590:199, 2004]:

$$\sigma_{dip}^{\mathrm{CGC}}\left(x,\boldsymbol{r}\right) = \sigma_{0} \, \left\{ \begin{array}{l} \mathcal{N}_{0} \left(\frac{\bar{\tau}^{2}}{4}\right)^{\gamma_{\mathrm{eff}}\left(x,r\right)}, & \text{for } \bar{\tau} \leq 2\,, \\ 1 - \exp\left[-a\,\ln^{2}\left(b\,\bar{\tau}\right)\right]\,, & \text{for } \bar{\tau} > 2\,, \end{array} \right.$$

where $\bar{\tau}=rQ_{\rm sat}$ and $\gamma_{\rm eff}\left(x,\,r\right)=\gamma_{\rm sat}+\frac{\ln(2/\tilde{\tau})}{\kappa\,\lambda\,Y}$, where $\gamma_{\rm sat}=0.63$, $\kappa=9$ and $Y=\ln(1/x)$.

- Saturation scale is given by $Q_{\rm sat} = (x_0/x)^{\lambda/2}$.
- Fit to small-x HERA data: $x_0 = 2.7 \times 10^{-7}$, $\lambda = 0.177$ and $\sigma_0 = 35.7$ mb ($\chi^2/\mathrm{dof} = 0.9$ for $Q^2 = [0.5,45]$).
- Ref.: Kowalski, Motyka and Watt, PRD74: 074016 (2006).
- Quark masses are $m_q = 0.14$ GeV and $m_c = 1.4$ GeV.

Corrections for exclusive processes

- The real part of amplitude can be accounted for by multiplying the differential cross section by a factor $(1 + \beta^2)$.
- The ratio of real to imaginary parts is given by:

$$\beta = \tan\left(\frac{\pi\alpha}{2}\right), \quad \text{where } \alpha \equiv \frac{\partial \ln\left[\mathcal{A}\left(\gamma N \to V N\right)\right]}{\partial \ln(W^2)}$$

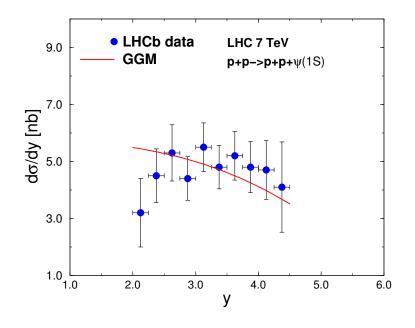
- For exclusive production, off-diagonal gluon distribution should be used, since the two exchanged gluons carry different fractions x and x' of the proton's momentum.
- Off-forward effects can be (phenomenologically) accounted for by multiplying the differential cross section by a factor R_g^2 [Shuvaev at al., Phys. Rev D60 014015 (1999)], where

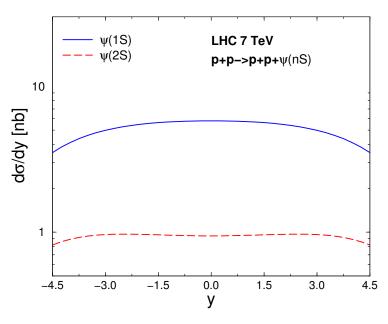
$$R_g = \frac{2^{2\alpha+3}}{\sqrt{\pi}} \frac{\Gamma\left(\alpha + \frac{5}{2}\right)}{\Gamma\left(\alpha + 4\right)}$$

Numerical results for pp@LHC

Photoproduction of $V=J/\Psi,\,\psi(2S)$ at 7 TeV ^a:

- Fairly describes the measured forward rapidity region.
- With $S_{\mathrm{gap}}^2 = 0.8$ we find in the interval $2 \le y \le 4.5$ $\sigma(pp \to p + J/\psi + p) \times \mathrm{Br}(J/\psi \to \mu^+\mu^-) = 698$ pb and $\sigma(pp \to p + \psi(2S) + p) \times \mathrm{Br}(\psi(2S) \to \mu^+\mu^-) = 18$ pb.





^aM.B. Gay Ducati, M.T. Griep, MVTM, Phys. Rev. D88, 017504 (2013) Workshop New Trends in High Energy Physics and QCD. 3-6 November 20

Quarkonium production in UPCs

The total exclusive (coherent) cross section can be written as an integral over the equivalent photon energy:

$$\sigma(A + A \to A + A + V) = 2 \int \sigma_{\gamma + A \to V + A}(k) \frac{dn_{\gamma}}{dk} dk$$

The rapidity distribution reads now as:

$$\frac{d\sigma(AA \to AA + V)}{dy} = k_1 \frac{dn_{\gamma}}{dk_1} \sigma_{\gamma A \to VA}(k_1) + k_2 \frac{dn_{\gamma}}{dk} \sigma_{\gamma A \to VA}(k_2),$$

- Once again, one has $k_{1,2} = (M_V/2) \exp(\pm y)$.
- Now, a model for the photonuclear cross section is in order.
- Information on nuclear effects should be included.

Photonuclear cross section

The photonuclear cross section can be written as

$$\sigma(\gamma A \to V A) = \left. \frac{d\sigma \left(\gamma A \to V A \right)}{dt} \right|_{t=0} \int_{t_{min}}^{\infty} d|t| |F_A(t)|^2$$

- $F_A(t)$ is the nuclear form factor and $t_{min} = (M_V^2/4k\gamma_L)^2$.
- Different implementations of $\frac{d\sigma(\gamma A \rightarrow V A)}{dt}|_{t=0}$ in literature.
- Klein and Nystrand: consider hadronic shadowing negligible for J/Ψ and Υ , $\frac{d\sigma(\gamma A \to V A)}{dt}|_{t=0} = A^2 \frac{d\sigma(\gamma p \to V p)}{dt}|_{t=0}$. Last quantity is taken from a fit to HERA data for vector mesons (and its corresponding extrapolation).
- M. Strikman and collaborators: consider leading twist shadowing $\frac{d\sigma(\gamma A \to V A)}{dt}|_{t=0} = \frac{[xg_A(x,\bar{Q})]^2}{[xg_N(x,\bar{Q})]^2} \frac{d\sigma(\gamma p \to V p)}{dt}|_{t=0}$. Last quantity also taken from fits to HERA data.

Model for photonuclear reaction

We consider the color dipole approach to compute the photonuclear cross section.

$$\sigma(\gamma A \to V A) = \int d^2b \left| \int dz \, d^2 r \, \Psi_V^*(z,r) \mathcal{N}^{\mathrm{nuc}}(x,r;b) \, \Psi_\gamma(z,r,Q^2) \right|$$

Dipole amplitude can be extended for nuclear case, with simple expression at large coherent length:

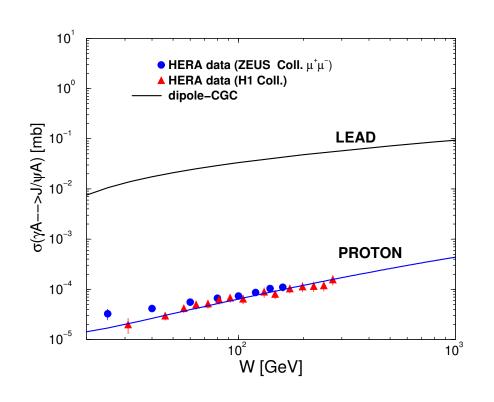
$$\mathcal{N}^{\text{nuc}}(x, r; b) = \left\{ 1 - \exp\left[-\frac{1}{2} A T_A(b) \sigma_{dip}(x, r)\right] \right\}$$

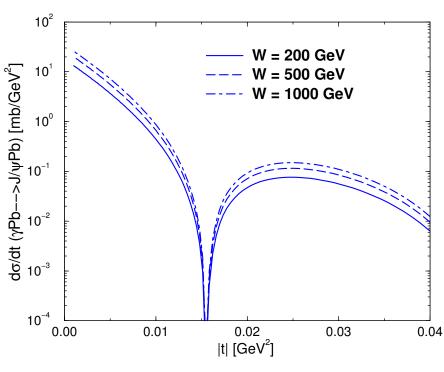
- Nuclear thickness function $T_A(b)$ (from Wood-Saxon), where b is the impact parameter of the center of the dipole relative to the center of the nucleus.
- The nuclear effect included via eikonalization above corresponds to the lowest $c\bar{c}$ Fock component of photon.

Numerical results - J/Ψ

Photoproduction of $V = J/\psi(3097)$:

- ullet Photonuclear cross section as a function of $W_{\gamma A}$.
- Extrapolation to $W_{\gamma A}=1$ TeV.
- ullet Differential cross section as a function of |t|.

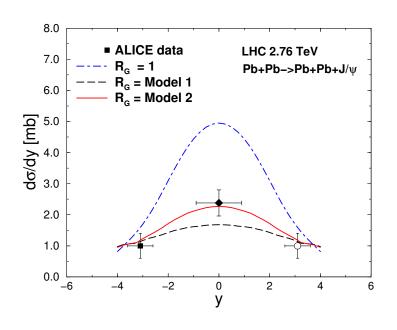


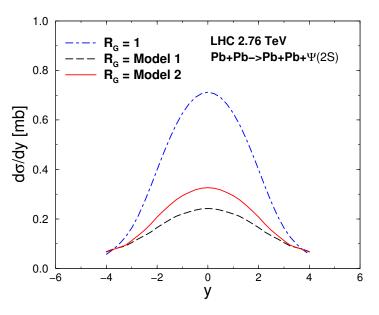


Numerical results - rapidity distribution

Photoproduction of $V=J/\psi, \psi(2S)$ at 2.76 TeV ^a:

- Overestimation of ALICE data for central rapidity (for BG+IIM). Message is that nuclear effects in model are weaker than expected from data.
- Possible modification $\sigma_{dip} \Rightarrow R_G(x,b) \, \sigma_{dip}$. Use leading twist shadowing model.

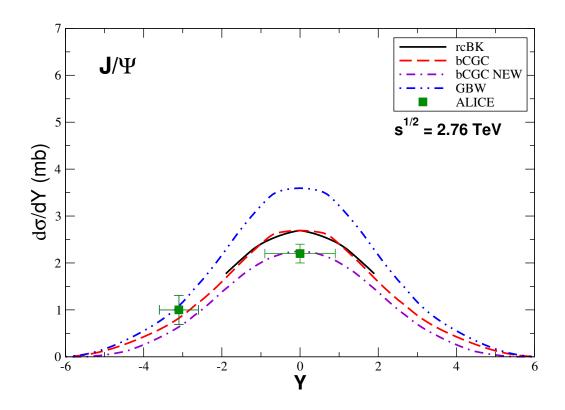




Numerical results - rapidity distribution

Photoproduction of $V = J/\psi, \psi(2S)$ at 2.76 TeV:

● Theoretical uncertainty in modeling the meson wavefunction and dipole cross section is large for coherent J/ψ production (here, LCG wavefunction) a .



^aV.P. Gonçalves, B.D. Moreira, F.S. Navarra, Phys. Rev. C90, 015203 (2014)

Incoherent cross section

- The incoherent processes can also be computed in high energies where the large coherence length $l_c\gg R_A$ is fairly valid.
- In such case the transverse size of $c\bar{c}$ dipole is frozen by Lorentz effects.
- The expression for the incoherent cross section can be written as:

$$\sigma(\gamma A \to V A^*) = \frac{1}{16\pi B_V(s)} \int d^2b T_A(b)$$

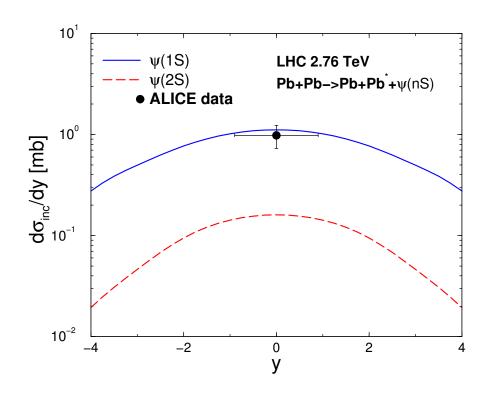
$$\times \left| \langle \Psi^V | \sigma_{dip}(x, \mathbf{r}) \exp\left[-\frac{1}{2} \sigma_{dip}(x, \mathbf{r}) T_A(b) \right] | \Psi^{\gamma} \rangle \right|^2$$

The bracket means overlaping on the photon/meson wavefunctions.

Numerical result - incoherent case

Incoherent J/ψ , $\psi(2S)$ photoproduction in AA collisions @ LHC

- Fairly description of J/ψ ALICE data at central rapidity.
- Some space for further suppression. Not compared to coherent case (Here, we use $R_G = 1$).



Quarkonium in pA collisions

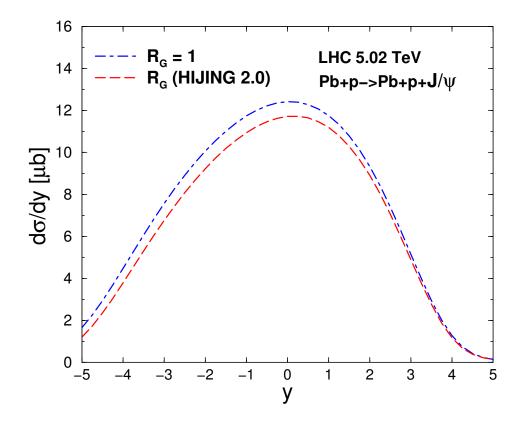
- In the pA collisions the quasireal photons can be emmitted by both the nucleus and the proton.
- The expression for the cross section takes the form

$$\frac{d\sigma(pA \to pA + V)}{dy} = \frac{dn_{\gamma}^{A}}{dk_{1}} \sigma_{\gamma p \to V p}(y) + \frac{dn_{\gamma}^{p}}{dk_{2}} \sigma_{\gamma A \to V A}(-y),$$

- $\frac{dn_{\gamma}^{p}}{dk_{2}}$ is the photon flux of the accelerated proton.
- $\frac{dn_{\gamma}^{A}}{dk_{2}}$ is the photon flux of the accelerated nucleus.
- Allow to do phenomenology for γp and γA interactions.
- Photon-proton contribution is dominant due to large photon flux from nucleus.

Result for J/ψ photoproduction in pA collisions @ LHC a

- Nuclear effects are slightly important at large rapidities.
- Comparing $R_G = 1$ and $R_G(x, b)$ from HIJING 2.0.



^aG. Sampaio dos Santos and MVTM, Phys. Rev. C89, 025201 (2014)

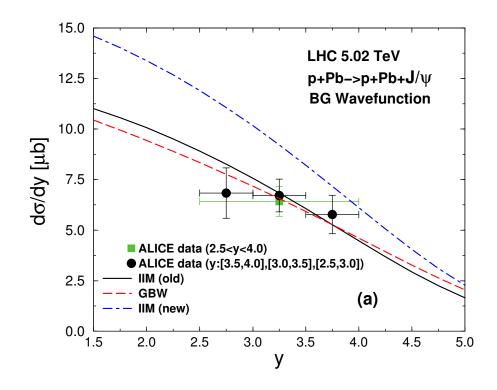
Result for $\Upsilon(1S)$ photoproduction in pA collisions @ LHC

- Nuclear effects are more important than for charmonia.
- Photon-nucleus contribution is non-negligible.



Analysing the theoretical uncertainty on meson wavefunction and dipole cross section fo J/ψ photoproduction in pA collisions @ LHC

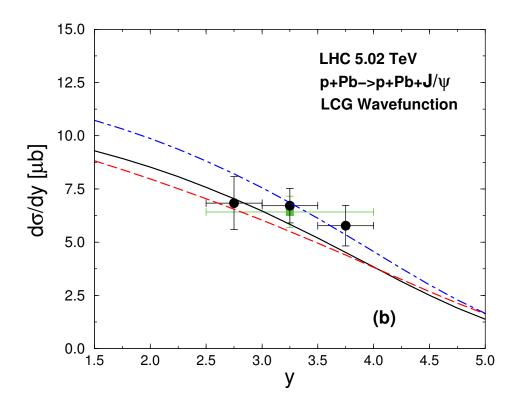
Here, using Boosted Gaussian wavefunction ^a



^aIIM-new: A.H. Rezaeain and I. Schmidt, Phys. Rev. D88, 074016 (2013).

Analysing the theoretical uncertainty on meson wavefunction and dipole cross section fo J/ψ photoproduction in pA collisions @ LHC

Here, using Light-Cone Gaussian wavefunction.



Summary

- We compute the quarkonium photoproduction production in pp, PbPb and Pbp collisions at the LHC.
- For the photonuclear cross section we consider the color dipole approach, with a particular phenomenological model for the dipole amplitude.
- The theoretical prediction for pp case is consistent with LHCb data on forward rapidity.
- In PbPb the predicted coherent cross section has weaker nuclear effect than expected from ALICE data at central rapidity. Incoherent case is somehow consistent with ALICE.
- Predictions for pA mode are presented, including $\Upsilon(1S)$ production (theoretical uncertainties analysed).