

Double J/ψ production in diffractive processes at the LHC

Cristiano Brenner Mariotto

cristianomariotto@furg.br

Instituto de Matemática, Estatística e Física, Universidade Federal do Rio Grande (FURG) Rio Grande, Brazil

* In collaboration with V.P. Goncalves

Outline

- Motivation
- Diffractive physics
- **Double** J/ψ production
 - color singlet and color octet models
- Diffractive production of double J/ψ considering the Resolved Pomeron Model
 - central diffractive processes (DPE)
- Present some estimates for $2J/\psi + X$ production in central diffractive processes @ LHC
- Comparison with recent LHCb data
- Conclusions

Introduction

- Quarkonium production at high energies probes the proton's gluon distribution due to dominance of subprocesses with two gluons in the initial state
- Still the quarkonium formation mechanism is a long standing puzzle, not fully understood, with interplay of perturbative and non-perturbative effects
- Diffractive processes \implies rapidity gaps in the hadronic final state
- Exchange of a Pomeron with vacuum quantum numbers
- $\checkmark pIP$ and IPIP interactions
- What is a Pomeron actually? Soft, hard, BFKL Pomeron...
- $If Pomeron has substructure \Longrightarrow DPDFs$
- Diffractive distributions of quarks and gluons in the Pomeron
- Tested in several processes like dijets, dileptons, heavy quarks, quarkonium + photon...
- Solution Other channels recently proposed: single and central diffractive $\gamma + \text{jet}$, $\gamma + \gamma$ (C.B.M., V.P. Goncalves, PRD 88 (2013))
- Since double quarkonium production is also dominated by gluon-gluon initiated subprocesses, this channel might be usefull to test the validity of Pomeron resolved model for diffractive interactions and pomeron structure

Diffractive parton distributions

- Resolved Pomeron Model
- Diffractive parton distributions in the proton: Convolution of
 - flux of Pomerons $\Rightarrow f_{I\!P}(x_{I\!P}) = \int_{t_{min}}^{t_{max}} dt f_{I\!P}(x_{I\!P}, t)$
 - $x_{I\!\!P} : momentum fraction of the proton carried by the Pomeron$
 - **9** t_{min} , t_{max} : kinematic boundaries
 - H1 Collaboration: flux factor motivated by Regge theory $f_{I\!\!P/p}(x_{I\!\!P},t) = A_{I\!\!P} \cdot \frac{e^{B_{I\!\!P}t}}{x_{I\!\!P}^{2\alpha_{I\!\!P}(t)-1}}$

• Pomeron trajectory assumed linear: $\alpha_{I\!\!P}(t) = \alpha_{I\!\!P}(0) + \alpha'_{I\!\!P}t$

- parton distributions in the Pomeron $\Rightarrow g_{I\!P}(\beta, \mu^2), q_{I\!P}(\beta, \mu^2)$
 - \square β : momentum fraction carried by the parton inside the Pomeron
- Diffractive quark and gluon distributions:

$$q^{D}(x,\mu^{2}) = \int dx_{I\!P} d\beta \delta(x - x_{I\!P}\beta) f_{I\!P}(x_{I\!P}) q_{I\!P}(\beta,\mu^{2}) = \int_{x}^{1} \frac{dx_{I\!P}}{x_{I\!P}} f_{I\!P}(x_{I\!P}) q_{I\!P}(\frac{x}{x_{I\!P}},\mu^{2})$$
$$g^{D}(x,\mu^{2}) = \int dx_{I\!P} d\beta \delta(x - x_{I\!P}\beta) f_{I\!P}(x_{I\!P}) g_{I\!P}(\beta,\mu^{2}) = \int_{x}^{1} \frac{dx_{I\!P}}{x_{I\!P}} f_{I\!P}(x_{I\!P}) g_{I\!P}(\frac{x}{x_{I\!P}},\mu^{2})$$

Diffractive parton distributions from HERA fits

- Two H1 2006 fits [EPJC 48, 715 (2006)]
- \neq parton densities at starting scale for QCD evolution
- \neq effective pomeron intercept and other parameters...
 - **fit A:** $\alpha_{I\!P}(0) = 1.118 \pm 0.008, \dots$
 - **fit B:** $\alpha_{I\!\!P}(0) = 1.111 \pm 0.007, \dots$
- larger uncertainty for the gluon content of the Pomeron
 - \Rightarrow fit B used in our first results

Inclusive Quarkonium production

- Still not fully understood, with interplay of perturbative and non-perturbative effects
- Phenomenological models
 - Color singlet model: $Q\bar{Q}$ pairs are produced in a color singlet state already at perturbative level $\Rightarrow gg \rightarrow Q\bar{Q}_1({}^3S_1) + X$
 - **Color octet model**: $Q\overline{Q}$ pair can be produced in a color octet state which evolves into a color singlet quarkonium state H via emission of soft gluons
 - based on NRQCD effective theory, with a factorization formula:

$$d\sigma(pp \to H + X) = \sum_{a,b,n} f_{a/p} f_{b/p} \otimes d\hat{\sigma}[ab \to Q\bar{Q}[n] + X] \langle O_n^H \rangle$$

- **power series in** α_s and v (non-relativistic heavy-quark velocity v)
- takes into account the complete structure of $Q\bar{Q}$ Fock space spanned by states $n = {}^{2S+1}L_J^{[a]}$, with a = 1, 8.
- $\langle O_n^H \rangle$: NRQCD matrix elements obeying velocity-scaling rules, usually determined by fits to experiments
- \checkmark contains color singlet contributions \rightarrow CSM in the v = 0 limit
- other models like eg. color evaporation and soft color interaction models (not considered here)

Inclusive double J/ψ production

Dominant contributions: gluon initiated subprocesses $gg \to c\bar{c}_1({}^3S_1)c\bar{c}_1({}^3S_1)$, $gg \to c\bar{c}_8({}^3S_1)c\bar{c}_8({}^3S_1)$

Inclusive double J/ψ production cross section

$$\frac{d\sigma}{dydp_T^2} = \int_{x_a \min}^1 dx_a f_a(x_a, \mu^2) f_b(x_b, \mu^2) \frac{x_a x_b}{2x_a - \bar{x}_T e^y} \sum_{i=1,8} \frac{d\hat{\sigma}}{d\hat{t}} (gg \to 2c\bar{c}_i({}^3S_1)) \\ \langle O_i^{J/\psi}({}^3S_1) \rangle \langle O_i^{J/\psi}({}^3S_1) \rangle \\ x_{a\min} = \frac{\bar{x}_T e^y}{2 - \bar{x}_T e^{-y}} , x_b = \frac{x_a \bar{x}_T e^{-y}}{2x_a - \bar{x}_T e^y} , \bar{x}_T = \frac{2m_T}{\sqrt{s}} , m_T = \sqrt{M^2 + p_T^2}$$

•
$$f_{a,b}$$
: CTEQ6 parton distributions

$$\mu = m_T$$
 $\frac{d\hat{\sigma}}{d\hat{t}}$: LO α_s^4 partonic cross sections

Inclusive double J/ψ : dominant processes

- Dominant contributions: gluon initiated subprocesses $gg \to c\bar{c}_1({}^3S_1)c\bar{c}_1({}^3S_1)$, $gg \to c\bar{c}_8({}^3S_1)c\bar{c}_8({}^3S_1)$
- Typical non-fragmentation contributions (both color singlet and color octet)

Typical gluon-fragmentation contributions (only color octet)

Inclusive double J/ψ production

LO α_s^4 partonic cross sections:

Color singlet contributions (*Qiao, C., PRD 66 (2002) 057504*):

$$\frac{d\hat{\sigma}}{d\hat{t}}\langle O_1^{J/\psi}({}^3S_1)\rangle\langle O_1^{J/\psi}({}^3S_1)\rangle = \frac{16\pi\alpha_s^4|R(0)|^4}{81M^2s^8(M^2-t)^4(M^2-u)^4}\sum_{jkl}a_{jkl}M^jt^ku^l$$

$$R(0)|^2 = 0.8 GeV^3$$
, $M = 2m_c$, $m_c = 1.5 GeV$

Color octet contributions (Ko, Lee, Yu, JHEP 01 (2011) 070):

$$\frac{d\hat{\sigma}}{d\hat{t}}[gg \to 2c\bar{c}_8(^3S_1)] = \frac{\pi\alpha_s^4}{972M^6s^8(M^2 - t)^4(M^2 - u)^4} \sum_{j=0}^{14} a_j M^{2j}$$

 $\langle O_8^{J/\psi}({}^3S_1) \rangle = 3.9 \times 10^{-3} GeV^3$

Inclusive double J/ψ @ LHC

Inclusive double J/ψ @ LHC

Inclusive double J/ψ @ LHC

Central Diffractive double J/ψ **production**

Central diffractive: IPIP interactions

- events with two rapidity gaps and $J/\psi + J/\psi$ at central region (it's not an exclusive process)
- amplified sensitivity to test the DPDF's (compared with single diffractive case)

Central Diffractive double J/ψ production

- Contributing LO diagrams: the same as in the inclusive case
- only considering the dominant gluon initiated diagrams
- **Central diffractive** double J/ψ production cross section

$$\frac{d\sigma}{dydp_T^2} = \int dx_a f_a^D(x_a, \mu^2) f_b^D(x_b, \mu^2) \frac{x_a x_b}{2x_a - \overline{x}_T e^y} \sum_{i=1,8} \frac{d\hat{\sigma}}{d\hat{t}} (gg \to 2c\bar{c}_i({}^3S_1)) \langle O_i^{J/\psi}({}^3S_1) \rangle^2$$

- $\blacksquare \mathbb{P}\mathbb{P}$ interactions
- $f_a^D(x_a, \mu^2), f_b^D(x_b, \mu^2)$: diffractive PDF's in both protons
- \blacksquare In fact, the factorization above is violated in pp interactions
- soft interactions might destroy the rapidity gaps
- Absoption effects can be parametrized in terms of a rapidity gap survival probability $|S|^2 \rightarrow$ probability that scattered proton do not dissociate due to secondary interactions
- Multiply the cross section by the average probability $s_G = \langle |S|^2 \rangle$, given by KMR model (*Khoze, Martin, Ryskin, EPJC 18 (2000) 167*)

Central Diffractive double J/ψ @ LHC

Central Diffractive double J/ψ @ LHC

Central Diffractive double J/ψ @ LHC

Estimates for the total cross section

including gap survival probabilities

y range	CM energy	inclusive	central diffractive	CEP*
y < 2.5	8 TeV	27203 pb	9.51 pb	10 pb
y < 2.5	14 TeV	39690 pb	16.02 pb	17 pb
2 < y < 4.5	8 TeV	9709 pb	2.16 pb	2.5 pb
2 < y < 4.5	14 TeV	15220 pb	4.43 pb	4.7 pb

- Recent LHCb data (2.0 < y < 4.5) for central exclusive double J/ψ production at 8 TeV: $\sigma = 24 \pm 9$ pb
- Similar values compared with H-LKR approach applied to exclusive $J/\psi J/\psi$ production (Born level $gg \rightarrow J/\psi J/\psi$ amplitudes in non-relativistic quarkonium approximation) within the Durham perturbative model and CTEQ6L PDF (*Harland-Land et al, arXiv:1409.4785[hep-ph]*): $\sigma = 1.9 - 6.7$ pb
- Uncertainties in the gap survival probabilities
- Diffractive PDF's and resolved pomeron model can be further tested @ LHC

Conclusions and discussion

- Central diffractive processes probe **PP** interactions
- Solution We have computed the central diffractive double J/ψ production in the framework of the Pomeron resolved model, including survival gap probabilities
- Resolved Pomeron model based on the diffractive factorization formalism: Pomeron with partonic substructure (describes HERA data very well)
- Dominant color singlet and color octet contributions included for both inclusive and central diffractive double J/ψ production
 - Solution For the p_T integrated rapidity distribution, only CSM is important
 - Solution For the p_T distributions, CSM dominate in the more important low p_T region, whereas COM dominates the higher p_T tail.
 - Only CSM is important for the considered central diffractive process
- Predictions for central diffractive double J/ψ production at the LHC
 - Results are very similar to a recent CEP calculation and below recent LHCb data
 - Remains to be studied the sensitivity with the factorization scale and with the gap survival probabilities
- To further test the underlying model for the Pomeron and diffractive parton distributions
- Next steps: consider the single diffractive channel ($I\!Pp$) and other quarkonium states