Higgs physics and experimental results

Bruno Lenzi

New Trends in High Energy Physics and QCD School, Natal, Brazil

22/10/2014

LHC, ATLAS and CMS

LHC: delivered luminosities

- LHC performance beyond expectations!
 - Higher luminosity → more pileup (additional interactions per bunch crossing)

 $N_{events} = \sigma x lumi$

• Detector efficiency > 90%

LHC collisions and pile-up

$Z \rightarrow \mu\mu + \sim 25$ interactions

- Collisions at 40 MHz, events recorded @ ~300 Hz, ~90% used for analyses
- Multiple collisions per LHC bunch crossing (~20 in 2012)
- Experimental conditions beyond detector design capabilities
- Clean signatures: leptons (e,µ) and photons
- Increasingly difficult: (b-)jets, taus, missing transverse energy

LHC collisions and pile-up

- Collisions at 40 MHz, events recorded @ ~300 Hz, ~90% used for analyses
- Multiple collisions per LHC bunch crossing (~20 in 2012)
- Experimental conditions beyond detector design capabilities
- Clean signatures: leptons (e,µ) and photons
- Increasingly difficult: (b-)jets, taus, missing transverse energy

The ATLAS and CMS experiments

Marumi Kado

Sub System	ATLAS	CMS		
Design	46 m	The second secon		
Magnet(s)	Solenoid (within EM Calo) 2T 3 Air-core Toroids	Solenoid 3.8T Calorimeters Inside		
Inner Tracking	Pixels, Si-strips, TRT PID w/ TRT and dE/dx $\sigma_{p_T}/p_T\sim 5 imes 10^{-4}p_T\oplus 0.01$	Pixels and Si-strips PID w/ dE/dx $\sigma_{p_T}/p_T \sim 1.5 imes 10^{-4} p_T \oplus 0.005$		
EM Calorimeter	Lead-Larg Sampling w/ longitudinal segmentation $\sigma_E/E\sim 10\%/\sqrt{E}\oplus 0.007$	Lead-Tungstate Crys. Homogeneous w/o longitudinal segmentation $\sigma_E/E\sim 3\%/\sqrt{E}\oplus 0.5\%$		
Hadronic Calorimeter	Fe-Scint. & Cu-Larg (fwd) $\gtrsim 11\lambda_0$ $\sigma_E/E\sim 50\%/\sqrt{E}\oplus 0.03$	Brass-scint. $\gtrsim 7\lambda_0$ Tail Catcher $\sigma_E/E \sim 100\%/\sqrt{E} \oplus 0.05$		
Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4	Muon Spectrometer System Acc. ATLAS 2.7 & CMS 2.4Instrumented Air Core (std. alone) $\sigma_{p_T}/p_T \sim 4\%$ (at 50 GeV) $\sim 11\%$ (at 1 TeV)			

Detector challenges: low P_T charged particles

Techniques: particle-flow and isolation

- Particle-flow: combine the information from several detectors
 - Can improve resolution and pileup rejection
- · Isolation: activity around the particle
 - Leptons and photons from H, W, Z decays vs. jets

The Standard Model at work

http://www.hep.ph.ic.ac.uk/~wstirlin/plots/plots.html

The SM Higgs boson at the LHC

H → <mark>γγ</mark>

σ X BR ~ 50 fb @ 125.5 GeV

- Loop decay, low BR $\sim 0.2\%$
- Simple topology
 - Two isolated energetic photons
- ...requiring excellent performance
 - Large backgrounds (excellent γ ID)
 - Signal: narrow peak (good mass resolution)

Electromagnetic calorimetry

- Challenges:
 - Energies from few GeV to TeV
 - Trigger capabilities
 - Precise position meas. (η, φ)
 - Jet rejection factor $\sim 10^4$
- Important characteristics:
 - Shower containment (> 20 X₀)
 - Good uniformity and stability vs. time and pileup (rad. hardness)
 - Fast signals and low noise
 - Fine segmentation

Schema of EM shower development

Simulated EM shower in ATLAS calorimeter

ATLAS EM calorimeter

- Lead liquid argon calorimeter
 - High stability, radiation hard
- Accordion-shape electrodes
 - Fast extraction of (ionization) signals without cracks
- Energy resolution (f_{sampling} ~ 20%):

$$\frac{\sigma_E}{E} = \frac{\sqrt{10\%}}{E(\text{GeV})} \oplus \frac{0.2 \text{ GeV}}{E} \oplus 0.7\%$$

- Fine lateral segmentation, 3 layers in depth (+ pre-sampler)
 - Strips of ~4mm in η to reject $\pi^0 \rightarrow \gamma \gamma$
 - γ direction ("pointing")

CMS EM Calorimeter

- Lead tungstate crystals (~75k)
 - Dense (22-23 cm long) and small Molière radius (~2-3 x 2-3 cm)
 - Scintillation light (few ns)
 - Sensitive to temperature variations and radiation

Photon identification

thanks to Jamie Saxon

VS

Goal: high γ efficiency, jet ($\pi^0 \rightarrow \gamma \gamma$) rejection factors ~10⁴

Material in front of calorimeters

Large amounts of material in front of the calorimeter from tracker and services

Material in front of calorimeters

Large amounts of material in front of the calorimeter from tracker and services

- Photons convert to e⁺e⁻ (which open in B field), bremsstrahlung for e[±]
- EM showers start earlier and become wider in the calorimeter
- Some energy is lost in front

Energy measurement

A. Correct for non-uniformities (inter-calibration, time-dependence, ...)

- ATLAS: stable over time (0.05%), CMS: E-flow, $\pi^0/\eta \rightarrow \gamma\gamma$, E/p, laser monitoring
- B. Correct for Ecalo < Eparticle
 - BDT using E, position, shower profile, conversion info, trained on simul. data

C. In-situ calibration using resonances like Z \rightarrow ee

- Estimate of energy scale uncertainty and resolution (for $E_T^e \sim 40$ GeV)

$H \rightarrow \gamma\gamma$: invariant mass reconstruction

- Energy and impact points from calo
- LHC beam spread (~6 cm) would add
 1.4 GeV smearing → vertex located using:
 - Longitudinal segmentation of calorimeter (ATLAS)
 - Conversion tracks
 - Tracks from recoil / underlying event

$H \rightarrow \gamma \gamma$: analysis strategy

- Select clean γγ sample (purity ~75%)
- Reconstruct m_{γγ}
- Split events in categories
 - Improve sensitivity
 - Resolution and S/B vary with e.g. η
 - Access to production modes
 - Leptons and jets for ttH
 - W/Z $\rightarrow \ell$, v or jets
 - Forward jets to tag VBF

• Likelihood function (model of the data):

Likelihood function (model of the data):

• Likelihood function (model of the data):

$$\mathcal{L}(\mu,\theta) = \prod_{events} f_s \psi_s(m_{\gamma\gamma};\theta) + (1 - f_s)\psi_b(m_{\gamma\gamma};\theta)$$
• Profile likelihood ratio:

$$\tilde{q}_{\mu} = -2\log\frac{\mathcal{L}(\mu,\hat{\theta}_{\mu})}{\mathcal{L}(\hat{\mu},\hat{\theta})}, \ 0 \le \hat{\mu} \le \mu$$
• Asymptotic approximation:

$$q_0 = -2\log\frac{\mathcal{L}(0;\theta_{\mu=0})}{\mathcal{L}(\hat{\mu};\hat{\theta})} \rightarrow \left(\frac{\hat{\mu}}{\sigma}\right)^2 = Z^2$$
(but $\hat{\mu} < 0 \rightarrow q_0 = 0$)

$$\frac{\mathcal{L}(0;\theta_{\mu=0})}{(\log \theta_{\mu})} = 0$$

Equivalent to:
$$\Delta\chi^2 = \chi^2 - \chi^2_{min}$$
 (with 1 d.o.f)

$H \rightarrow \gamma\gamma$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	5.2	4.6	1.17 ± 0.27
CMS	5.7	5.2	$1.14_{-0.3}^{+0.26}$

Enhancing the signal with weights from the categories

$H \rightarrow ZZ^* \rightarrow 4\ell$

•

"Golden channel" but very small rates

σ X BR ~ 2.9 fb @ 125.5 GeV

p_T of the 4 leptons

a.u. 0.1 $H \rightarrow ZZ^{(*)} \rightarrow 4\mu$ • BR(Z → ℓℓ) ~ 3.3% m_H = 126 GeV 0.08 Low p_T leptons Before the selection 0.06 Need very high efficiency for e^{-} and μ • After the selection p_T² down to low P_T (~5 GeV) 0.04 DT 0.02) 100 p⊤[GeV] 20 40 60 80 0 √s = 8 TeV, L = 19.7 fb⁻¹ 1 Efficiency Efficiency 0.9 0.98 0.8 ATLAS 0.96 → Z MC → J/ψ MC 0.7 0.94 - Z Data - J/ψ Data √s = 8 TeV 0.92 - 0.5 0.6 Chain 1 CB + ST Muons 0.9 $L = 20.3 \text{ fb}^{-1}$ $Z \rightarrow e^+ e^ 0.1 < |\eta| < 2.5$ 0.00 < hpl < 0.806 8 4 0.5 .80 < ml < 1.44 Data / MC $.56 < |\eta| < 2.00$ 1.01 2.00 < ml < 2.500.4¹ 7 10 30 40 20 100 200 0.99 60 80 20 40 100 120 Electron $p_{_{T}}$ (GeV) p_{τ} [GeV]

$H \rightarrow ZZ^* \rightarrow 4\ell$

- "Golden channel" but very small rates
 - Signature: 2 pairs of oppositely charged, same flavour leptons
 - Leading $m_{\ell\ell}$ close to m_Z
- Narrow peak ($\sigma_{m4\ell} \sim$ 1.6-2 GeV) on top of smooth background (S/B \sim 1)
 - Main backgrounds:

Handful of events but clean peak!

	(CMS		\ s = 7 ⊺	ГеV, L =	5.1 fb ⁻¹ ;	√ s = 8	TeV, L =	19.7 fb ⁻¹
•) 5	35	_		1 1			• D	ata	
)	30-	_					Z	+X	
)			İ				Z	γ [*] ,ZZ	
) 	25	-	I T				m	h _H =126	GeV
	20	_			Т				
	15	_			П				
	10		I				Т		
		-	┥╽			I ,	I I I	Тт	
	5					● ↓ ↓ ◆ ◆			
		<u>,</u> , , , , , , , , , , , , , , , , , ,	╷╷┈╻╴╸	┼┿┼┦	│ │ ╷╹╵ ┝				
	0-	80	10	0	120	14	0	160	180
								m _{4l} (GeV)

Channel	4e	2e2µ	4μ	4ℓ
ZZ background	1.1 ± 0.1	3.2 ± 0.2	2.5 ± 0.2	6.8 ± 0.3
Z + X background	0.8 ± 0.2	1.3 ± 0.3	0.4 ± 0.2	2.6 ± 0.4
All backgrounds	1.9 ± 0.2	4.6 ± 0.4	2.9 ± 0.2	9.4 ± 0.5
$m_{\rm H} = 125 {\rm GeV}$	3.0 ± 0.4	7.9 ± 1.0	6.4 ± 0.7	17.3 ± 1.3
$m_{\rm H} = 126 {\rm GeV}$	3.4 ± 0.5	9.0 ± 1.1	7.2 ± 0.8	19.6 ± 1.5
Observed	4	13	8	25

$H \rightarrow ZZ^* \rightarrow 4\ell$

- Full event kinematics!
 - Discriminant against ZZ* background improves sensitivity
 - 5 angles and 2 masses to measure spin/CP

	Z_{obs}	Z_{exp}	μ
ATLAS	8.1	6.2	$1.44_{-0.33}^{+0.40}$
CMS	6.8	6.7	$0.93^{+0.29}_{-0.16}$

Higgs mass measurement

Known to ~1% at discovery, ~0.3% now

- H → γγ: systematic uncertainties from energy scale
 - $e \rightarrow \gamma$ extrapolations, non-linearities
 - Huge effort to reduce by factor 2-3
- $H \rightarrow 4\ell$: dominated by statistical uncertainties
- Compatibility: 2.0σ (ATLAS), 1.6σ (CMS)
 - Shifts in opposite directions

	ATLAS	CMS
$H o \gamma \gamma$	$125.98 \pm 0.42 \text{ (stat)} \pm 0.28 \text{ (sys)}$	$124.70 \pm 0.31 \text{ (stat)} \pm 0.15 \text{ (sys)}$
$H\to ZZ^*\to 4\ell$	$124.51 \pm 0.52 \text{ (stat)} \pm 0.04 \text{ (sys)}$	$125.6 \pm 0.4 \text{ (stat)} \pm 0.2 \text{ (sys)}$
Combined	$125.36 \pm 0.37 \text{ (stat)} \pm 0.18 \text{ (sys)}$	$125.03^{+0.26}_{-0.27} \text{ (stat)}^{+0.13}_{-0.15} \text{ (sys)}$
	125.36 ± 0.41	$125.03_{-0.31}^{+0.29}$

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$

$H \rightarrow WW^* \rightarrow \ell v$

3R ~ 200 fb @ 125.5 GeV

- Signature: opposite-sign reproves (e, μ) and range massing nansverse energy
 - Higgs is a scalar
 - Leptons emitted with small $\Delta \varphi$
 - Limited mass resolution from v's
 - Transverse mass as main discriminant:

$$m_T^2 = \left(E_T^{\ell\ell} + E_T^{\text{miss}} \right)^2 - \left| \vec{p_{T_{\ell\ell}}} + \vec{E_T^{\text{miss}}} \right|$$

- Large backgrounds: WW, W+jets, top, Z/γ*, di-bosons
 - Mostly data-driven
- Data split according to jet multiplicity
 - 0/1 jets: ggF signal, WW background
 - 2 or more jets: VBF signal, top background

$H \rightarrow WW^* \rightarrow \ell v \ell v$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	6.1	5.8	$1.08^{+0.22}_{-0.20}$
CMS	4.3	5.8	$0.72^{+0.20}_{-0.18}$

4.9 fb⁻¹ (7 TeV) + 19.4 fb⁻¹ (8 TeV) CMS 200 S/(S+B) weighted events / bin data - backgrounds $m_{\rm H} = 125 \text{ GeV}$ $H \rightarrow WW$ eμ 0/1-jet 150 🕅 bkg uncertainty 00 50 0 -50 200 250 100 150 50 m_{T} [GeV]

$H \rightarrow WW^* \rightarrow \ell v \ell v$: a look at the data

$H \rightarrow \tau \tau$

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

EXPERIMENT

→ Decay length: ~87 µm Tau decays and arecomstructions

$H \rightarrow \tau \tau$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	4.5	3.5	$1.42^{+0.44}_{-0.38}$
CMS	3.0	3.7	0.78 ± 0.27

TITLE

(W/Z) H → bb

- Huge backgrounds from QCD
 - Associated production with W/Z decaying to leptons and neutrinos
- 2 b-tagged jets (displaced vertices)
- m_{bb} resolution ~ 10%
- Split events in P_T(W/Z)
 - Boosted topologies, enhance sensitivity
- Backgrounds: di-boson,
 W/Z+jets (heavy flavour), top, multijets
- Discriminant: BDT

(W/Z) $H \rightarrow bb$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	1.4	2.6	0.52 ± 0.4
CMS	2.1	2.1	1.0 ± 0.5

Rare decays: $H \rightarrow Z\gamma \rightarrow \ell \ell \gamma$, $H \rightarrow \mu \mu$

- Clean signatures
 - Leptons and low- E_T photon / opposite charged muons
- Low signal yields and large backgrounds, modeled by analytical functions
 - Z+γ (~80%) and Z+jet (~20%) / Drell-Yan (~95%)
- Limits @ 95% CL, m_{H} = 125.5 GeV: μ \lesssim 10 $~/~\mu$ \lesssim 7

σ X BR ~ 2.3 fb (~5 fb)

@ 125.5 GeV