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Abstract

This is a set of 3 lectures (50 minutes each) prepared for the Natal School 2014. The aim of these

lectures is to introduce the basic ideas of string theory and their applications to particle physics. These

lectures hopefully serve to complement the lectures by Eduardo Ponton (BSM and Extra Dimensions),

Marc Besanon (Phenomenology and experimental aspects of SUSY and searches for extra dimensions

at the LHC), Dmitry Melnikov (Holography and Hadron Physics), and Jorge Noronha (AdS/CFT

and applications to particle physics). These lectures are an update of my lectures at the TASI 2008

Summer School and the Trieste 2010 Spring School – both serve as useful references for this course.
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1 Introduction

This is the first of 3 lectures on “String Phenomenology and Model Building”. My plan for these

lectures is roughly as follows:

• Lecture I: String Phenomenology, with Branes

• Lecture II: D-brane Model Building

• Lecture III: Randall-Sundrum Scenario in String Theory: Warped Throats & their Field Theory

Duals

Basic Theme:

The basic theme of these lectures is to introduce some modern string theory tools useful for building

models and scenarios of particle physics beyond the Standard Model. Of course, particle physics is

not all what string phenomenology is about. String theory, being a quantum theory of gravity, is also

a natural arena to address questions about early universe cosmology. However, string cosmology is a

topic that warrants a set of lectures on its own. Instead of thinning ourselves too much, these lectures

will focus on the particle physics aspects of string theory. Fortunately, the tools that we introduce
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in these lectures like D-branes, warping, and holography also found applications in cosmology model

building, especially in realizing inflation in string theory. So, these lectures will hopefully give you a

good start to explore these other string phenomenology topics as well.

As Eduardo discussed in his lectures, a major driving force behind physics beyond the Standard

Model (and also the LHC) is the hierarchy problem. Many scenarios in solving this problem have been

proposed, but it is fair to say that the main contenders are:

• Supersymmetry

• Extra Dimensions

• Strong dynamics (technicolor, composite Higgs etc)

So, what does string theory have to do with these BSM physics? The answer is - a whole lot.

Supersymmetry and extra dimensions are common ingredients in string compactifications. In fact,

supersymmetry was discovered to some extent first in the context of string theory, as a way to introduce

fermions and to remove the unwanted tachyons. The idea of extra dimensions has been around for

over a hundred years so string theory cannot claim credit for inventing this idea. However, theories

with extra dimensions are not renormalizable. To make sense of these theories, we need to complete
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them in the UV. String theory provides such a UV completion. Moreover, as we will see in these

lectures, there are stringy constraints on extra dimensional physics that are not apparent from a low-

energy bottom-up approach. So, one might hope that string theory can shed light on what kinds

of extra dimensional scenarios are more likely to be realized in nature. Finally, models that involve

strong coupling dynamics are difficult to analyze as perturbative techniques break down. However,

the gauge/gravity correspondence (aka holography) can provide a dual weakly coupled description of

such theories. As Eduardo discussed, this duality has offered insights into technicolor model building.

So, given that the the hierarchy problem is intrinsically about the existence of a high cutoff scale

and string theory is our best developed framework for describing physics at such high energies, it is

worthwhile to explore BSM physics in the context of string theory. With these motivations in mind,

we will discuss in the first two lectures how models of particle physics can be constructed from string

theory. In the last two lectures, we will discuss how string theory provides us a tool to analyze strong

coupling dynamics in BSM scenarios.
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Lecture I: String Phenomenology, with Branes

2 String Phenomenology, with Branes

Before we talk about D-brane model building, let us go back in time to the mid 80s (when most of you

were not yet born) to see how life was like without branes. It was known at that time that there are

five consistent string theories, all formulated in ten dimensions: Type I theory with gauge symmetry

SO(32) which involves both open and closed strings, Type IIA and IIB which are theories of closed

strings, and two closed heterotic strings with gauge symmetries E8 × E8 and SO(32) respectively:

• Among these formulations, three of them already contain gauge bosons in ten dimensions. They

seem more promising as a starting point to construct the Standard Model and chiral fermions

upon dimensional reduction.

• For this reason, Type II theories didn’t look too interesting. There was even a no-go theorem which

forbids them to produce the Standard Model upon compactification [Dixon, Kaplunovsky,

Vafa (1987)].

• The heterotic E8 × E8 attracted much of the attention as it had many of the features one would
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like in a BSM scenario: upon compactification to 4D, it can give rise to chiral N = 1 SUSY

models with familiar gauge and matter content. The observable sector comes from the first E8

which contains the Standard Model gauge symmetry

E8 ⊃ SU(3)× SU(2)× U(1) (1)

and replication of matter families. The second E8 gives rise to a hidden sector which can be

responsible for SUSY breaking. Gravity is often assumed to be the messenger of SUSY breaking

to the observable sector.

This picture changed dramatically in the mid 1990s. The discovery of string dualities suggested

that the five consistent string theories together with 11D SUGRA are just different limits of the

same underlying theory. There is no fundamental reason why we have to start from any particular

description. The techniques of constructing realistic models have also been much extended. We can

now start from any of these descriptions and obtain models with features of the Standard Model:

1. 11D SUGRA: There are two broad ways in which chiral fermions can arise from 11D SUGRA. One

is purely geometrical. Just as the requirement of N = 1 supersymmetry in 4D singles out Calabi-

Yau compactifications of string theory, G2 manifolds provide a purely geometric construction if

our starting point is 11D. Smooth G2 manifolds do not support chiral fermions, a necessary feature
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of the Standard Model. Nevertheless, chiral fermions can arise from co-dimension 7 singularities

in a G2 manifold while gauge fields are supported on a codimension 4 subspace.

Another way in which chiral fermions can arise from 11D is the Horava-Witten construction. In

this construction, the 11-th dimension is an interval. One can think of the two E8 as living at

the endpoints of the interval which are 10D surfaces. Further compactification on Calabi-Yau

manifolds give rise to interesting chiral models. Incidentally, an additional dimension accessible

only to gravity helps solve the discrepancy between the unification scale and the Planck scale.

2. Type I, IIA, IIB Strings: We can also construct chiral models in Type II string theories with

D-branes. This will be the subject of the first two lectures. Jumping a bit ahead of ourselves,

there are also several ways in which chiral fermions can arise: branes at singularities, intersecting

branes, and so on.

These D-brane constructions can be generalized to include the backreaction of branes in F-theory

(proposed by Vafa). In Type IIB string theory, the two scalar fields of the 10D theory, the dilaton

and axion are combined into one complex field S = a+ iφ, which realizes the S-duality symmetry

SL(2,Z):

S → aS + b

cS + d
a, b, c, d ∈ Z with ad− bc = 1 (2)
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which is similar to how the modular parameter of a torus transforms. Therefore, one can “ge-

ometrize” this varying axio-dilaton background as compactification on an elliptically fibered CY

4-fold which is locally a product of this torus with a six-dimensional (non Calabi-Yau) base B3.

These compactifications naturally incorporate D7-branes, which are given by points in the base1

where the elliptic fibration degenerates.

What do these constructions have in common? They involve one way or the other the notion

of branes – either a D-brane or the end-of-the-world brane in the Horava-Witten construction, or a

singularity in a G2 manifold, or a degeneration of the fibration in an elliptically fibered Calabi-Yau

four-fold. This brane world idea has triggered a foray of phenomenological studies as explained in

Eduardo’s lectures. Here we will discuss their string theory realizations. In particular, we will focus on

D-brane models both because we don’t need to introduce very complicated mathematical machineries

to describe them and that they are closely accessible by holographic tools through the AdS/CFT

correspondence.

One of the interesting features of scenarios with branes is that the fundamental scale of nature can

be much lower than the Planck scale and therefore closer to the energies accessible by experiments. To

see this, consider the Standard Model gauge fields to be localized on the worldvolume of Dp branes,
1More precisely, points in P1.
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the low energy effective action in 4D takes the form:

S4d =

∫
d4x
√−g

(
M 8

sV6e
−2φR4 +

1

4
M p−3

s Vp−3e
−φF 2

µν + . . .

)
(3)

There are two crucial differences in comparison to the heterotic case where all the low energy degrees

of freedom come from closed strings. Firstly, the power of the dilaton is different for the gravity and

the gauge kinetic terms. Secondly, the total volume V6 enters on the gravity part but only the volume

of the cycle of the internal manifold that the p-branes wrap around appears in the gauge part of the

action. In particular for a D3-brane, there is no volume factor contribution to the gauge coupling.

The gravitational and gauge couplings are then related to the fundamental string scale as follows:

M 2
P =

M 8
s

(2π)7

V6

g2
s

, α−1
YM = 4π

M p−3
s Vp−3

gs
(4)

where we have restored factors of 2 and π. We can easily see that if the Standard Model fits inside a

D3-brane, for instance, we may have Ms substantially smaller than MP as long as the volume of the

extra dimensions are large enough, without affecting the gauge couplings. More generally, the above

relations illustrate the “brane world” effect where the dimensions transverse to the branes (which are

not necessarily D3-branes) if large can lower the fundamental string scale. In the heterotic case, setting

the volume very large would make the gauge couplings extremely small and furthermore the KK modes

are light, which are unrealistic.
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The possibility of having large dimensions add a “geometrical” view of the hierarchy problem, though

we still need to explain why the size of the dimensions are stabilized to a large value. Several scenarios

have been proposed:

1. Ms ∼MP . This is analogous to the heterotic scenario and similar comments apply.

2. Ms ∼ MGUT ∼ 1016 GeV. This corresponds to a compactification scale r ≡ V
1/6

6 ∼ 10−30cm

or equivalently Mc ∼ 1014 GeV. This is analogous to the Horava-Witten construction and allow

the possibility of the unification of gauge and gravitational couplings (if the Standard Model is

realized on the same set of branes).

3. Ms ∼MI ∼ 1010−12 GeV ∼ √MEWMP . If the Standard Model is realized on a set of D3-branes,

this corresponds to a compactification scale r ∼ 10−23 cm. This proposal was based on the special

role played by the intermediate scale MI in different issues beyond the Standard Model. Examples

include the scale of SUSY breaking in graviy mediated SUSY breaking scenario and the scale of

the axion field introduced to solve the strong CP problem.

4. Ms ∼MEW ∼ TeV. This is the string theory realization of the large extra dimensions scenario a

la ADD. Note that the hierarchy problem is not totaly solved. We still need to explain why the

compactification size is so large.
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D-branes thus offer many more scenarios, in contrast to the heterotic string where the fundamen-

tal string scale is rigidly fixed: Ms ∼ gYMMP ∼ 1018−19 GeV. Without going into details of the

constructions to which we turn next, a few observations can already be made:

• Gauge unification is not necessarily realized in D-brane models. The tree-level gauge coupling

depends on the volume of the cycles the branes wrap around and can be different for different

gauge factors of the Standard Model.

• We may or may not consider SUSY in D-brane constructions because the fundamental string

scale can be much lower than the Planck scale. However, stable D-brane configurations realizing

non-SUSY models are harder to construct since they usually come with (i) closed string tachyons,

and (ii) runaway potentials for moduli (dilaton, volume, etc). So, for the purpose of the first two

lectures, we wil focus on N = 1 SUSY examples. We will discuss metastable SUSY breaking in

Lectures III and IV.

• D-brane models can be easily combined with other ingredients such as sources of moduli stabiliza-

tion and supersymetry breaking e.g. background fluxes. We will discuss compactifications with

fluxes in Lecture III.

• Although we will focus on D-brane models, much of our discussions can be generalized to other
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brane constructions in M/F theory models.

• Besides motivating new BSM scenarios, D-brane models also realize more traditional scenarios

such as hidden sector (useful for dark matter scenarios) and gravity mediated SUSY breaking, but

now in a more geometrical and stringy way.

3 D-branes and Chirality

We now turn to the main point of these lectures. D-branes contain non-Abelian gauge fields so they

are a good starting point. But in addition to the SU(3) × SU(2) × U(1) gauge structure, we need

another fundamental property of the SM, i.e., 4D chiral fermions.

The worldvolume theory on a stack of N D-branes in flat space is an N = 4 SU(N) SYM. Type

IIB string theory in flat space has maximal SUSY and the D3-branes are 1/2 BPS. The extended

SUSY forbids chiral fermions. One might think that choosing a compactification which preserves

fewer supersymmetries like a CY space or turning on fluxes can immediately change the situation, but

it does not because this is a local issue at the location of the branes.

To make this point more precise, consider a D3-brane sitting at a point P in the extra dimensional
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spaceM6, with background fluxes. The background fluxes can in principle break the supersymmetry

to N = 1 or N = 0 so chirality is possible. However, one can continuously deformM6 and dilute the

fluxes to reach again flat space. Along this deformation, the gauge group does not change, so gauge

protected quantities, like the number of chiral families should not change. Therefore, the spectrum in

the original configuration is non-chiral.

In general, an open string with both ends on a stack of N D-branes tansforms in the adjoint

representation of U(N), hence the theory is non-chiral. Let us consider instead a stack of ND3 D3-

branes and ND7 D7-branes. If we place them on top of each other, we have

U(ND3)× U(ND7) (5)

gauge groups and matter in the representations:

m(ND3, ND7) + m′(ND3, ND7) (6)

where m, m′ are multiplicities. But since we can separate them by a distance, the strings between D3

and D7 can gain a mass. Hence m = m′ and the theory is non-chiral.

How could one obtain chirality? Four dimensional chirality is a violation of parity. In string theory,

4D chirality is correlated with the chirality in the 6 extra dimensions. Hence to achieve 4D chirality, we
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should consider D-brane configurations that somehow introduce a preferred orientation in 6D. There

are several closely related ways to achieve this:

1. D-branes at singularities: We can consider placing D-branes in spaces that are not smooth.

Chirality can arise if the D-branes are sitting at a singularity. A simple example is to consider

a stack of D3-branes sitting at an orbifold singularity. An orbifold is a discrete identification of

space and this defines a preferred orientation.

2. Intersecting branes: We can also consider pairs of D-branes that cannot be separated from

one another. Intersecting D-branes lead to chiral fermions in the sector of open strings stretched

between different kinds of D-branes. (Again, the angle between one stack of branes with respect

to another defines a preferred orientation).
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3. Magnetized D-branes: Finally, chirality also arises when we turn on a non-trivial field strength

background for the worldvolume U(1) gauge fields. The magnetic fields introduce a preferred

orientation in the internal dimensions through the wedge product F ∧F ∧F as the volume form.

An important point to make here is that these constructions are “modular” in the sense that we

can locally obtain the Standard Model witout having to know all the details of the compactification.

This is of great importance because we can follow a bottom-up approach instead of looking at random
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compactifications hoping that they could give rise to the Standard Model.

We will present this bottom-up approach for building realistic model. Most of the important details

of the model, such as the gauge group, the number of chiral families, etc, will depend only on the local

properties of the geometry felt by the branes. Therefore we can keep the main properties of the model

intact regardless of whether we are talking about a complicated Calabi-Yau space or a simple toroidal

orbifold compactification. This makes the models constructed more robust. This is the main practical

advantage of D-brane model building over the heterotic string.

Before we go on, let me point out that these methods of obtaining chirality are in fact related by

dualities. The simplest way to see this is to note that turning on a gauge bundle on the worldvolume

of D-branes induces lower-dimensional D-brane charges. For example, one can think of a Dp brane

with n units of magnetic flux on a torus:
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as a bound state of a Dp brane and n Dp−2 brane. Under T-duality:

R→ α′/R (7)

the closed string spectrum remains the same but the dimension of D-branes changes. A Dp brane with

its worldvolume extended along the T-dual direction will become a Dp−1 brane whereas a Dp brane

with its worldvolume transverse to the T-dual direction will become a Dp+1 brane. Now let’s T-dualize

along one direction:

The Dp and the Dp−2 branes both turn into a Dp−1 brane but they orient along different directions.
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Thus branes with magnetic fluxes become branes at angles. Likewise, we will see later that the D3-

branes at singularities which give rise to chiral fermions, known as fractional branes, can be thought

of higher dimensional branes wrapping around a collapsed cycle with some gauge bundle on them.

So, why do we discuss these approaches separately if the setups are dual to one another? It turns

out that in some situations, one side of the duality is simplier than the other. Furthermore, we will

soon introduce background fluxes. Under duality, the background flux can turn into a non-trivial

metric background and the two descriptions are no longer equivalent at least in this simple form. So

it is useful to have an intuition about each of these approaches independently.
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4 D-branes at Singularities

First, let us discuss how one can construct chiral models from D-branes at singularities. The simplest

type of singularities is perhaps orbifold singularities, and we will begin with that. We will review what

we need to know about orbifolds as we go along.

• A manifold M6 is by definition locally like R6, but string theory is defined even on manifolds

that are not smooth. The extra dimensions can contain singularities, like orbifold or conifold

singularities.

• Orbifolds are spaces that locally look like R6 or R6/Γ where Γ is a discrete subgroup of SO(6),

the rotation group of the 6 extra dimensional space.

• Although the gravity background is singular, strings are well-behaved at orbifold singularities. This

has been shown in the classic papers of (Dixon, Harvey, Vafa, Witten, 1985) for closed

strings and (Douglas and Moore, 1996) for open strings.

• What is an orbifold? Consider a simple case T 2/Z2. The Z2 orbifold symmetry acts on the

two-dimensional torus as follows:

θ : (x1, x2)→ (−x1,−x2) (8)
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There are 4 fixed points: (0, 0), (1/2, 0), (0, 1/2), (1/2, 1/2) (if we normalize the radii of T 2 to 1).

x x

x xx ! – x! !e2

e1

Locally, the singularity looks like a cone and globally the T 2/Z2 orbifold is a tetrahedral (or

ravioli):

360 String geometry

Noncompact examples

A simple noncompact example of an orbifold results from considering the

complex plane , described by a local coordinate z in the usual way, and

the isometry given by the transformation

z → −z. (9.1)

This operation squares to one, and therefore it generates the two-element

group 2. The orbifold / 2 is defined by identifying points that are in the

same orbit of the group action, that is, by identifying z and −z. Roughly

speaking, this operation divides the complex plane into two half-planes.

More precisely, the orbifold corresponds to taking the upper half-plane and

identifying the left and right halves of the boundary (the real axis) according

to the group action. As depicted in Fig. 9.3, the resulting space is a cone.

Fig. 9.3. To construct the orbifold / 2 the complex plane is divided into two
parts and identified along the real axis (z ∼ −z). The resulting orbifold is a cone.

This orbifold is smooth except for a conical singularity at the point (0, 0),

because this is the fixed point of the group action. One consequence of

the conical singularity is that the circumference of a circle of radius R,

centered at the origin, is πR and the conical deficit angle is π. An obvious

generalization is the orbifold / N , where the group is generated by a

rotation by 2π/N . In this case there is again a singularity at the origin

and the conical deficit angle is 2π(N − 1)/N . This type of singularity is

an AN singularity. It is included in the more general ADE classification of

singularities, which is discussed in Sections 9.11 and 9.12.

The example / 2 illustrates the following general statement: points

that are invariant (or fixed) under some nontrivial group element map to

singular points of the quotient space. Because of the singularities, these

quotient spaces are not manifolds (which, by definition, are smooth), and
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Fig. 2. The tetrahedron as a two-dimensional Z 2 orbifold. (a) The parallelogram with vertices 

A , A ' , A ' , A "  is the unit cell for the hexagonal lattice. Points are identified under a rotation by ~r about 

the center of the unit cell; the fixed points are indicated by solid dots. (b) The triangle with corners 

A,A',A" in (a) can be folded up along the dashed lines to create the tetrahedron with vertices A, B,C, D. 

(and one conjugacy class of space group elements) associated with each of the fixed 

points of the Z 2 transformation, which here are just the four vertices of the 

tetrahedron. 

We will be describing below various classical solutions which contribute to the 

twist correlation functions; we can use the tetrahedron example to illustrate the 

solutions as maps from the world-sheet S 2 onto the tetrahedron. For example, if we 

calculate a four-point function where the four twist fields create states located at the 

four different fixed points A, B, C, and D, then one classical solution (in fact 

the one with minimum action) is a one-to-one map from the world-sheet sphere to 

the tetrahedron. Since the tetrahedron is topologically equivalent to the two-sphere, 

this classical solution is the topologically stable solution guaranteed by the second 

homotopy group ~r2(S 2) = Z. In fig. 2a this solution appears as a string stretching 

along the left edge of the unit cell for the torus (line segment ABA') which 

propagates to the right until it reaches the parallel line segment CDC'). On the 

tetrahedron in fig. 2b the string starts wrapped around the edge AB and ends up 

wrapped around the edge CD. The fact that the classical solution is so simple on the 

unfolded version of the tetrahedron (fig. 2a) is essentially why orbifold scattering 

amplitudes are exactly calculable. Other classical solutions for the same set of twist 

fields (i.e. the same set of fixed points {A,B,C,D}) will cover the tetrahedron a 

number of times, either by "bouncing" off the edges AB and CD several times, or 

by starting off wrapped around the edge AB several times. On the unfolded version 

of the tetrahedron, the string either propagates further to the right or starts 

stretched a longer distance parallel to the left edge of the toms. Hence these 

solutions will have greater action (world-sheet area) and smaller contribution to the 

amplitude. For a different collection of twist fields, the set of solutions will be 

different. For example, if all the fixed points of the twist fields are taken to be the 

same point, then the zero-action solution, in which the string just sits at that fixed 

• Let’s look at a slightly more non-trivial example: T 2/Z3. The discrete Z3 orbifold symmetry acts

on the complex coordinates z = x1 + ix2 of the torus as follows:

θ : z → αz where α = e2πi/3 (9)

There are three fixed points as shown in the figure:
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Fig. 3. A two-dimensional Zs orbifold. (a) The three fixed points for the ]~ rotation on the hexagonal 

lattice A. (b) The same lattice A. The three cosets of A are denoted by the same symbols uscd for the 

corresponding fixed points in (a). 

(corresponding to the fixed point at the origin) is actually a sublattice of A, which 

can be denoted by (1 - O)A =- {(1 - O)u, u • A }. The other cosets are not lattices 

but lattices "shif ted" by some vector %. From (3.6) we see that v 0 is just (1 - O)f,  

modulo  (1 - O)A (similarly for 0 -  l), and so we can denote the cosets of A by 

( 1 - 0 J ) ( f + A ) ,  / a f i x e d p o i n t o f O  j ,  j =  + 1 .  

The case of a two-dimensional Z 3 orbifold is illustrated in fig. 3. This case requires 

the two-dimensional lattice to be hexagonal in order for 0, the rotation by ~Tr, to be 

an automorphism. This rotation has three fixed points on the torus, which are 

shown in fig. 3a. The three cosets of lattice vectors corresponding to each of the 

three fixed points are shown in fig. 3b. 

The conjugacy classes for the higher-twist sectors ( j ~  + 1) are not usually in 

one-to-one correspondence with the fixed points of OL The reason is that some of 

the fixed points may not be fixed by 0; physical states are then 0-invariant linear 

combinat ions of states located at different fixed points of 0 j. So there are actually a 

large number  of twist fields associated with a Z N orbifold. Each may be labelled by 

two indices: o = oj,,. The first index j = 1,2 . . . .  , N - 1 denotes one of the N - 1 

twisted sectors of the Hilbert space - the sector twisted by 0 j. The second index 

e = 1, 2 . . . . .  n f ( j )  labels a conjugacy class within that sector; for j = + 1 it indicates 

the fixed point f (or fixed toms) of 0 at which the twist field creates a twisted state. 

We will also denote the j = + 1 single twist and antitwist fields by o ~_; they create 

states which are the antiparticles of each other. 

Now that we have established the correspondence between twist fields and 

conjugacy classes of the space group of the orbifold, we can describe the proper 

global monodromy conditions on the field X. The class of space group elements 

Note that vectors undergo a non-trivial rotation when transported along a closed curve around

the singularity (localized holonomy).

• In general, we can consider a local singularity of the form C3/Γ where Γ = ZN . The discrete

symmetry ZN acts on the complex coordinates of C3 as follows:

θ : (z1, z2, z3)→ (α`1z1, α
`2z2, α

`3z3) (10)

where α = e2πi/N , `i ∈ Z such that θN = 1.

• One can check that if θ is a matrix of determinant 1:

θ ∈ SU(3)⇔ `1 ± `2 ± `3 = 0 (mod N) (11)
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for some choices of sign, then

Γ ⊂ SU(3) ⊂ SO(6) , SUSY is preserved (12)

If this condition is not satisfied, then we find closed tachyons in the closed string spectrum. For

concreteness, we will take the choice of signs, `1 + `2 + `3 = 0 (mod N).

• Furthermore, only if we require: ∑

i

`i = even (13)

do we have fermions in the spectrum. In more technical terms, the orbifold is called a spin

manifold.

• The orbifold action has the following effects on closed strings. It projects out states that are not

invariant under the twist, reducing the number of states in the spectrum. It also increases the

number of states in another way since it now includes the so called “twisted sector”. An open

string around a fixed point with its two endpoints lying at points which are identified under the

orbifold is not included in the spectrum of states in the unorbifolded space but it is a valid closed

string in the orbifold. In other words, there are two sectors:

– Untwisted sector: strings closed on C3
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– Twisted sector: strings not closed on C3 but closed on C3/Γ (confined to the singularity)

fields with spin, however, is more subtle, since the identification subjects such 

;- 
fields to nontrivial boundary conditions. When we identify the left and bottom 

edges of-the parallelogram in Fig. 15, we also identify the vectors tangent to 
. these edges. Thus, at a point P on the bottom edge identified with a point P’ 

on the left edge, a vector field T(z) must obey the boundary condition 

T(P’) = !R(120°) - T(P) , (10.4) 

where X(120’) denotes a rotation through 120°. Spinor fields, and field of more 
general spin, obey a similar boundary condition with the rotation matrix in the 

appropriate representation of the rotation group. 

In string theory, the situation becomes even more involved. 

- 
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Figure 17. Three possible configurations for closed strings on an orbifold: 

(a) trivial; (b) winding; (c) twisted. 
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T(P’) = !R(120°) - T(P) , (10.4) 

where X(120’) denotes a rotation through 120°. Spinor fields, and field of more 
general spin, obey a similar boundary condition with the rotation matrix in the 

appropriate representation of the rotation group. 

In string theory, the situation becomes even more involved. 

- 

_._._ . 
- 

( b) 
._ 

- 

(cl 

_ , _Y_ l-96 

-- - 6639Al6 :- L 

Figure 17. Three possible configurations for closed strings on an orbifold: 

(a) trivial; (b) winding; (c) twisted. 
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• Closed strings are not charged under the D-brane gauge group and so they will not give us the

Standard Model particles. We will not analyze their spectrum. However, the closed string spectrum

determines the types and number of moduli fields we have. They will be important later on when

we discussed moduli stabilization.

• The open string spectrum is our main concern for particle physics model building. We know how

to quantize open strings exactly to all orders in α′ in these backgrounds. We will however discuss

only the massless spectrum.

• If we are away from the singularity, things work as in flat space. The branes are arranged in a ZN
invariant fashion. They are identified and the open string spectrum is that of U(N) N = 4 SYM

(plus α′ corrections).

• If the branes sit on the singularity, we have an “orbifolded” gauge theory. The spectrum is given
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by the open strings that are well defined at the singularity. This means open strings invariant

under the action of θ.

• The orbifold twist θ has two actions

– θ ∈ SO(6): R-symmetry group of D = 4, N = 4 SYM.

– θ ∈ U(N): “permutes” the D-brane positions.

The action of θ on the U(N) gauge degrees of freedom is then given by an N ×N matrix Γθ. We

will elaborate on this shortly.

4.1 Explicit Examples

We now see explicitly how the spectrum of D-branes at a ZN singularity, like the fixed points of

orbifolds, become chiral. As discussed before, the spectrum is determined by the local properties so

for simplicity, let us consider a D3-brane in flat 10D space with the six extra dimensions modded out

by a ZN twist θ. (There are too many N in this business! Here, we refer to N for the order of the

twist, n for the number of overlapping D-branes, and N for the number of supersymmetries).

If we have a stack of n D-branes, the original gauge group is U(n). The gauge degrees of freedom
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are represented by the Chan-Paton matrices λij, i, j = 1, . . . , n, associated to the endpoints of the

open strings and which belongs to the adjoint of U(n). The action of the orbifold twist on the gauge

degrees of freedom are given by:

λ→ ΓθλΓ−1
θ (14)

where Γθ is of order N and can be diagonalized to take the simple form:

Γθ =




In0

αIn1

α2In2

·
·
αN−1InN−1




(15)

Here α = exp(2πi/N), Ink is the identity matrix in nk dimensions and the integers nk satisfy the

constraint
∑

k nk = n. (i.e., n D-branes are split into groups of nk’s).

Let us now see how the original N = 4 vector multiplet transforms under the action of the twist

defined by θ and Γθ. We can write the N = 4 multiplet in terms of the N = 1 multiplets:

• Vector Multiplet: V ≡ (Aµ, λ)
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• Chiral Multiplets: Φa ≡ (φa, ψa), a = 1, 2, 3 (a labels the 3 complex extra dimensions)

Therefore Φa which has an a index feels both the action of θ and Γθ where V feels only the action

through Γθ.

Remember that we have to keep only the states that are invariant under the twist. This means that

V = ΓθV Γ−1
θ . This breaks the gauge group to:

U(n)→ U(n0)× U(n1)× · · · × U(nN−1) (16)

with the number of factors equal to the order of the twist N . This means that if we want three gauge

factors, we should have a Z3 twist and so on.

The surviving chiral superfields satisfy Φa = α`aΓθΦaΓ
−1
θ . The first factor being the action of

θ. Therefore remembering that λ carries adjoint indices (which are composed of fundamentals and

anti-fundamentals) we can easily see that the remaining matter fields transform as:
3∑

a=1

N−1∑

i=0

(ni,ni+`a) (17)

Here the sum over i is understood to be mod N , and ni means the fundamental of U(ni).

This is a typical spectrum in this class of models. The matter fields tend to come in bi-fundamentals

of the product of gauge groups. These can be arranged into “quiver” diagrams (see figure). These
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diagrams are made out of one node per group factor, i.e., the i-th node corresponding to the gauge

group U(ni). There are also arrows joining the nodes. An arrow going from the i-th to the j-node

correspond to a chiral field in the representation (ni, nj) (note the orientation). A closed triangle of

arrow would indicate the existence of a gauge invariant cubic superpotetial for those fields.

U(n) U(m)

U(p)

(n,p) (p,m)
_ _

_
(m,n)

A D3-brane in a quiver node is called a “fractional” D3-brane, and it cannot be taken away from

the singularity. This is why two fractional D3-branes in different nodes can host a chiral fermion.

Other examples of local singularities and their quivers include C3/Z5 and the conifold. We will

discuss D-branes at conifold singularities in Lecture III.
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Figure 2: Figure a) shows the quiver diagram for the C3/Z5 singularity, with Z5

action (z1, z2, z3) → (e2πi 1
5 z1, e

2πi 1
5 z2, e

2πi −2
5 z3). Figure b) shows the quiver of the

singularity after an orientifold projection.

From the physical point of view, the equality of moduli spaces may in some
cases [19, 22] be a reflection of Seiberg duality, a non-trivial infrared equiva-
lence of seemingly different field theories.

2.2.2 Orientifold projections

Type IIB string theory is invariant under an operation Ω which reverses the
orientation on the world-sheet. Hence it is possible to consider modding out
type IIB configurations by Ω, possibly accompanied by a geometric involution
g, also leaving the theory invariant [27, 28]. The new configurations thus
obtained are called orientifolds, and are characterized by the inclusion of
non-orientable world-sheets in the string theory perturbative expansion.

We are interested in studying D3-branes at orientifold threefold singu-
larities, i.e. Ωg quotients of the system of D3-branes at singularities in CY
threefolds. The best studied case is again that of quotient singularities C3/Γ,
and for the sake of clarity here we center on Γ = ZN with the action of the
generator θ of ZN on C3 represented by γ = diag(e2πit1/N , e2πit2/N , e2πit3/N ),
with ti integers defined modulo N , and

∑3
a=1 ta = 0 mod N . Let us embed

the action of θ on the Chan-Paton indices by a diagonal matrix γθ,3 with Nk

entries e2πi k/N . The field theory one obtains has vector multiplets with gauge
group

∏N
i=1 U(Ni), and chiral multiplets Φa

i,i+ta , a = 1, . . . , 3, i = 1, . . . , N in

the representation (Ni, N i+ta).
The orientifold action may also be embedded in the space of Chan-Paton

indices, through a matrix γΩg,3. The representations of Γ and Ωg are usually

7

3,4

x y z = w 2 x y = z w 2

1

2

3

4

1

2

1

234
a) b) c)

x y = z w

Figure 1: Figure a) shows the quiver diagram for a C3/(Z2×Z2) singularity, which
can be defined as the hypersurface xyz = w2 in C4. Partial blow-ups resolve it
to the suspended pinch point singularity (xy = zw2), and the conifold (xy = zw),
whose quiver diagrams are shown in Figures b) and c). Each blow-up is reflected
on the quiver as the joining of two nodes (the joint node is denoted by a hat), and
the disappearance of certain arrows (depicted with thin heads).

A general recipe to obtain the field theory on D3-branes at a general toric
singularities X was proposed in [24] (see [25] for a more general discussion).
It is based on realizing X as a partial resolution of a threefold quotient sin-
gularity C3/Γ for suitable Γ ⊂ SU(3). The construction requires a precise
identification of the effect of the resolution on the field theory, which is a spe-
cific Higgs mechanism in which several gauge factors break to their diagonal
subgroup, and some chiral multiplets become massive and disappear from
the light spectrum. The detailed map has been worked out in some explicit
examples, e.g. in [24, 26], and provides an explanation for the existence of
quiver diagrams for non-orbifold singularities. They are obtained by joining
nodes and deleting arrows in the quiver of the initial quotient singularity, as
dictated by the Higgs mechanism in the field theory. The quiver version of
the resolution of the C3/(Z2×Z2) singularity to the conifold is shown in Fig-
ure 1 [24]. It would be interesting to obtain a more precise characterization
of these operations on quiver diagrams.

Another interesting question is related to the uniqueness of the field the-
ory corresponding to a given singularity [25]. In some cases, different field
theories may have isomorphic moduli spaces. Mathematically, the represen-
tation moduli of the corresponding quivers with relations are isomorphic.

6

Back to our example. From the generic chiral spectrum in eqn. (17), we can extract a very simple

but powerful conclusion: Only for Z3 will we get the chiral matter spectrum in three identical copies

or families. The reason is that only for that case we have `1 = `2 = `3 mod N , since `1 = `2 = 1 and

`3 = −2 = 1 mod 3. Other twists given by (1/N, 1/N,−2/N) will give rise to two families. Therefore

three is not only the maximum number of families for this class of models but is obtained only for one

twist, the Z3 twist.

If we want to have the Standard Model we can consider n0 = 3, n1 = 2, n2 = 1 to get the gauge

group U(3)× U(2)× U(1). The spectrum will then be:

3×
[
(3,2) + (1,2) + (3,1)

]
(18)

where we have suppressed the U(1) quantum numbers. This gives the 3 families of left-handed quarks,

right-handed up quarks, and leptons, just as in the Standard Model. However, we can easily see that

29



we are missing at least the right-handed down quarks. Actually, the spectrum as it is, is anomalous.

What happens from the string theory point of view is that there are uncancelled tadpoles for twisted

sector fields. We will take care of this shortly and construct models that are fully consistent, but until

then we can explore some general properties of the model as it stands now.

First, there are actually three U(1)’s. Only one combination of them is anomaly free and it is defined

in general (for any N) by:

QY = −
(

1

3
Q3 +

1

2
Q2 +

N−2∑

s=1

Q
(s)
i

)
(19)

In a general orbifold all other N − 1 additional U(1) factors are anomalous and therefore massive due

to a version of the Green-Schwarz mechanism. The Green-Schwarz mechanism is the cancellation of

one-loop diagrams by tree-level diagrams due to the exchange of p-forms. We will discuss the Green-

Schwarz mechanism in more detail later. For now, we can quickly check that this U(1) does correspond

to the hypercharge, as expected since hypercharge is essentially the only non-anomalous U(1) (other

than B−L) with the spectrum of the Standard Model. For instance, fields transforming in the (3,2)

representation have QY charge −1
3 + 1

2 = 1
6 as correspond to left-handed quarks. Fields transforming

in the (3,1) (which necessarily have charge +1 under one of the Q
(s)
1 generators) have a QY charge

+1
3 − 1 = −2

3, as corresponds to right-handed U quarks, etc.
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It is worth noticing that the normalization of this hypercharge U(1) depends on the order of the

twist N . In fact, by normalizing U(n) generators such that TrT 2
a = 1

2, the normalization of the Y

generator is fixed to be

k1 = 5/3 + 2(N − 2) (20)

This amounts to a dependence on N in the Weinberg angle, namely

sin2 θW =
g2

1

g2
1 + g2

2

=
1

k1 + 1
=

3

6N − 4
(21)

Thus the weak angle decreases as N increases. Notice that the SU(5) result 3/8 is only obtained

for a Z2 singularity. However in that case the D3-brane spectrum is necessarily vector-like and hence

one cannot reproduce the Standard Model spectrum. For the interesting case for us, N = 3, we find

sin2 θW = 3/14.

Now, back to the uncancelled tadpoles. To cancel these tadpoles at the singlarity it is necessary

to have not only the D3-branes but also D7-branes. There are three types of D7-branes that can be

introduced depending on which 2 of the 3 complex dimensions they contain. The consistency condition

(tadpole cancellation) can be written as

TrΓθ,73 − TrΓθ,71 − TrΓθ,72 + 3TrΓθ,3 = 0 (22)
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This condition can be obtained by analyzing one-loop open string diagrams with boundaries on various

combinations of D3 and D7-branes. More intuitively, we can understand this condition as equivalent

to non-Abelian anomaly cancellation in the effective field theory (since 3 − 7 strings introduce chiral

matter fields charged under the D3-brane gauge groups). Notice that without the D7-branes we could

not have the Standard Model on the D3-brane. (e.g., a solution for the 7-brane CP factors is ur0 = 0,

ur1 = 1, ur2 = 2 for r = 1, 2, 3). Nevertheless, the choice n0 = n1 = n2 = 3 gives an anomaly free

spectrum even without introducing D7-branes, and so the trinification model with gauge group U(3)3

can be realized.

The D7-branes will have extra gauge groups and matter fields living on the D7-brane which can

be obtained in a similar way, with a matrix Γθ,7i (with i = 1, 2, 3 labeling different D7-branes) acting

on the gauge degrees of freedom of the D7-branes. There are also massless matter fields living at

the intersection of the D7 and D3-branes, corresponding to open strings with one endpoint on the

D3-branes and the other on the D7-branes. This will complete the spectrum of the Standard Model

and render the model anomaly free at the singularity. The D7-brane gauge couplings depend on the

volumes of the wrapped cycles. If the volumes are large, the D7 gauge groups act essentially as global

symmetries. We can picture the Standard Model realized on the D3-D7 system as follows:
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U(3)c
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b

LQ

R

D3

U(1)U(2)L

d

dL, H
D7

As an illustration, a particular example of configuration of D3 and D7 branes and the resulting

spectrum is given in Table 1.

A similar model can be constructed choosing n0 = 3, n1 = 2, and n2 = 2 with

Γθ = diag
(
I3, αI2, α

2I2

)
(23)

giving rise to a left-right symmetric model with gauge group:

U(3)× U(2)L × U(2)R (24)

and three families of chiral matter:

3×
[
(3,2,1) + (3,1,2) + (1,2,2) + (1,2,1) + (1,1,2)

]
(25)
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Matter fields Q3 Q2 Q1 Qur
1

Qur
2

Y

33 sector

3(3, 2) 1 -1 0 0 0 1/6

3(3̄, 1) -1 0 1 0 0 -2/3

3(1, 2) 0 1 -1 0 0 1/2

37r sector

(3, 1) 1 0 0 -1 0 -1/3

(3̄, 1; 2′) -1 0 0 0 1 1/3

(1, 2; 2′) 0 1 0 0 -1 -1/2

(1, 1; 1′) 0 0 -1 1 0 1

7r7r sector

3(1; 2)′ 0 0 0 1 -1 0

Table 1: Spectrum of SU(3)× SU(2)× U(1) model. We present the quantum numbers under the U(1)9 groups. The first three U(1)’s come from

the D3-brane sector. The next two come from the D7r-brane sectors, written as a single column with the understanding that e.g. fields in the 37r

sector are charged under the U(1) in the 7r7r sector.

where we suppressed the U(1) charges above. Again, B − L is the only anomaly free U(1), the other

U(1)’s acquire a mass by the Green-Schwarz mechanism.

It is important to emphasize that this is not the full story for these models. Remember that we

are building them step by step from a bottom-up approach. There are further issues involved in

constructing compact models. So far we have concentrated only on a singularity in flat space modded
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out by the action of ZN . If we compactify the extra dimensions, the total RR charge of the D7-branes

has to cancel, since there is no place for the RR flux to escape in the compact space. This will force

us to add objects with negative RR charges like anti D7-branes or orientifold planes. For stability

reasons, the anti D7-branes have to be separated from the D7-branes or else they will annihilate. They

can be placed at different orbifold fixed points, for instance.

An anti D7-brane breaks supersymmetry since it preserves the half of the supersymmetry that the

D-brane breaks. Therefore if both are present, the full supersymmetry is broken. If the anti-branes are

trapped at different fixed points, then only bulk fields can mediate the breaking of supersymmetry to

the observable brane. This is a realization of the gravity mediated SUSY breaking scenario. In order

to obtain a realistic spectrum of supersmmetric particles, the scale of SUSY breaking (string scale in

this model) is typically the intermediate scale MI ∼ 1011 GeV. Therefore, one might realize gauge

unification at the string scale and low energy supersymmetry breaking solving the hierarchy problem.

(The intermediate scale MI is also motivated from axion physics).

Finally, let us emphasize again the flexibility of this bottom-up approach in model building. Our

discussions can be generalized to F-theory since the D3-brane gauge and matter content depends

only on the local geometry. However, F-theory allows for more general D7-brane configurations,

e.g., it allows D7-branes carrying both “electric” and “magnetic” charges to coexist in the model
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(more precisely, they are the so called (p, q) 7-branes). Furthermore, singularities beyond the simplest

ZN singularities discussed here have been considered in [Aldazabal, Ibanez, Quevedo, Uranga

(2000)]. These include non-Abelian twists, orientifold singularities, and conifold singularities. For

the case of non-Abelian singularities, an interesting model was proposed in [Berenstein, Jejjala,

Leigh (2001); see also Grana (2002)]. There, a singularity of the type C3/G with G = ∆27

was considered. The group G = ∆27 is one of the non-Abelian discrete subgroups of SU(3) and thus

preserves SUSY on the D3-brane, like in the ZN cases. The ∆27 group is actually one of the ∆3n2

series whose action on C3 is given by:

e1 : (z1, z2, z3) → (ωnz1, ω
−1
n z2, z3) (26)

e2 : (z1, z2, z3) → (z1, ωnz2, ω
−1
n z3)

e3 : (z1, z2, z3) → (z3, z1, z2)

One of the interesting properties of this model is that there is no need to introduce D7-branes to

cancel the local tadpoles. The gauge group on the D3-branes is U(3)2 × U(1)9 which can further be

broken to the Standard Model with three families (due partly to the Z3 subgroup of ∆27).
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Lecture II: D-brane Model Building

5 Intersecting Branes

Another mechanism to obtain D = 4 chiral fermions is to consider intersection of branes. We will

discuss these models in the Type IIA context, although the issues we discuss (e.g., how chiral fermions

are localized at brane intersections) will analogously arise in Type IIB and F theory models as well.

Before we discuss all the details and subtleties, let’s begin with the overall picture. We know by now

that an open string carries indices in the adjoint representation of U(n). The adjoint can be seen as

the product of fundamental and anti-fundamental representation, therefore one end of the open string

transform as the fundamental and the other as the anti-fundamental. When the two endpoints of the

open string lie on the same stack of branes, we have particles like the gauge bosons in the adjoint. But

when they lie on different stacks of branes it gives rise to bi-fundamentals. This is what happens at

the intersections of two branes. The states corresponding to open strings ending on each of the two

branes correspond to bi-fundamentals that can naturally lead to a chiral spectrum.

A way to obtain the Standard Model group and spectrum is to intersect several stacks of branes.

One stack of three correspond to the strong interactions, it can intersect with a stack of two D-
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branes corresponding to SU(2)L. At the intersection, we have then the quark doublets. At a different

intersection point the stack of two D-branes will intersect with one brane carrying U(1) and the leptons

will be at the intersection and so on. As it turns out, we need to introduce minimally four stacks of

branes to fully account for the quantum number of all the Standard Model particles. Pictorially, the

building block looks something like this:

48 D-Brane Phenomenology

Label Multiplicity Gauge Group Name

stack a Na = 3 SU(3) × U(1)a Baryonic brane
stack b Nb = 2 SU(2) × U(1)b Left brane
stack c Nc = 1 U(1)c Right brane
stack d Nd = 1 U(1)d Leptonic brane

Table 5: Brane content yielding the SM spectrum.

U(2)
U(1)

U(1)

U(3)

Gluon

Q

W

L e

R’ L

R

Ru  d

Figure 15: The building block to have just the standard model from intersecting D-branes. This is a set
of four stacks of D branes. The QCD stack contains three D-branes giving rise to U(3). The ‘left’ stack
contains two branes giving rise to U(2), the intersection of these two stacks contains the left-handed quarks.
Two more stacks, each containing one single brane, is needed to have the spectrrum of the standard model.

each a single brane. These four stacks of branes intersect in the compact six dimensions (plus
Minkowski) and at the intersections chiral fermions with the quantum numbers of the SM
appear. Thus, for example, the right-handed U-quarks occur at three different intersections
of the baryonic stack with the right stack (see fig.15).

Each stack of branes comes along with a unitary gauge group so that the initial gauge
group is SU(3)QCD × SU(2)L × U(1)a × U(1)b × U(1)c × U(1)d. A linear combination of
these four U(1)’s may be identified with the standard hypercharge and at some level the
rest of the U(1)’s should become massive. In the class of D6-brane models of ref.[109] and
D5-brane models of ref.[118] the charges of quarks and leptons with respect to these U(1)’s
is shown in Table 6. Here the asterisk denotes the ‘orientifold mirror’ of each given brane,
which must always be present in this kind of orientifold constructions (see [109] for details).
Note that U(1)a and U(1)d can be identified with baryon number and (minus) lepton number
respectively. On the other hand U(1)c can be identified with the third component of right-
handed weak isospin. Finally, U(1)b is an axial symmetry with QCD anomalies, very much
like a PQ-symmetry. It is easy to check from the above fermion spectrum that U(1)b and
3U(1)a−U(1)d linear combination have triangle anomalies whereas U(1)a+3U(1)d and Qc are
both anomaly-free. In fact the standard hypercharge may be written as a linear combination
of these two symmetries:

QY =
1

6
Qa −

1

2
Qc +

1

2
Qd . (66)

The four stacks of branes are named the baryonic branes, the left brane, the right brane, and the

leptonic brane for obvious reasons.

If this is all it takes to construct the Standard Model from intersecting branes, life will be simple.

As we now discuss, there are further string theory constraints both in constructing a “local model”

and in embedding this setup in a compact setting.
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5.1 Local Geometry and Spectrum

The basic configuration of intersecting D-brane models leading to 4D chiral fermions involve two stacks

of D6-branes, each spanning our 4D space and three additional real dimensions.

The local geometry is fully specified by the angles of rotations between the branes, which can be

depicted as follows:
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As we discussed, chiral fermions in bi-fundamental representations are localized at the intersection of

the brane worldvolumes, which is our usual 4D space. The appearance of chirality can be understood

from the fact that the geometry of the two D-branes introduces a preferred orientation in the 6D space.

We can see this by considering the relative rotation of the second D6-brane with respect to the first.

This also explains why we consider configuration of D6-branes (and not other types of branes, like D4

and D5, etc). D6-branes are the only type of branes that intersect at a point (rather than a line or a

surface) and so their intersection defines a particular orientation in 6D, giving rise to chiral fermions.

The open string spectrum can also be obtained easily. In fact, one can quantize open strings in this

intersecting brane background and obtain the full string spectrum and not only the massless states

but we will skip over these details. As far as massless states go, the open strings ending on the same

stack of D-branes provide the U(N) gauge bosons, three real adjoint scalars and their superpartners

propagating over the 7D worldvolume of the D6-branes. The open strings stretching between different

kinds of branes lead to a 4D chiral fermion transforming in the bi-fundamental representation and

localized at the intersection. The chirality is encoded in the orientation defined by the intersection.

This last point requires some elaboration. Notice that:
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• Two intersecting D6-branes define 3 angles:

~θab = (θab1 , θ
ab
2 , θ

ab
3 ) (27)

This is because each 3-plane has an orientation, which differentiates between a D6-brane and an

D6-brane. Under a π rotation of any of these angles, a D6-brane becomes an D6-brane:

(θa1, θ
a
2, θ

a
3)→ (θ1 + π, θa2, θ

a
3)→ (θa1 + π, θa2 + π, θ3) (28)

D6 D6 D6

• We can always choose −π ≤ θabi ≤ π. Then if θabi 6= 0,±π,

~θab = −~θba (29)

and so

εab ≡ sign(θab1 θ
ab
2 θ

ab
3 ) = −εba (30)

is a well defined quantity.

• If some θabi = 0 or π, then εab is not well defined, but the system is non-chiral since one can

separate the branes.
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• If all θabi 6= 0, π, then the intersection cannot be removed by deforming the D6-branes. Therefore,

there could be a chiral fermion at the intersection.

• It was shown by [Berkooz, Douglas, Leigh (hep-th/9606139)] that there is indeed an

D = 4 chiral fermion, of chirality εab, at the intersection, as well as some light scalars (also in

bi-fundamental reps.) whose masses depend on the relative angles:

1

2π
(θ1 + θ2 + θ3)

1

2π
(−θ1 + θ2 − θ3)

1

2π
(θ1 − θ2 − θ3) 1− 1

2π
(−θ1 − θ2 + θ3) (31)

These light scalars can be massless, massive or tachyonic depending on the relative angles. This

point will become clear as we analyze the SUSY preserved by the branes.

• Notice that:

– An open string from a to b has quantum number (Na, N b) and chirality εab.
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– An open string from b to a has quantum number (Na, Nb) and chirality −εab.

They are anti-particles of one another and together gives the two fermionic degrees of freedom

corresponding to one chiral Weyl fermion from a 4D spacetime point of view.

5.2 Compactification

Although intersecting D6-branes provide a mechanism to obtain 4D chiral fermions, the gauge bosons

can propagate in the entire worldvolume of the D6-branes and so the gauge interactions remain 7D.

Likewise, the gravitational interactions remain 10D before compactification. So, let us introduce the

intersecting D-branes in a compact setting.

The general kind of configurations we will consider is string theory on a spacetime of the form

M4 ×X6 where X6 is compact.
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The D6-branes are space-filling and wrap 3-cycles of the compact space. The new feature is that two

3-cycles in the compact space intersect several times, leading to replicated families of chiral fermions.

• Consider Na D6-branes onM4 × Πa
3 and Nb D6-branes onM4 × Πb

3, we have

– U(Na)× U(Nb) gauge group

– One chiral fermion in (Na, N b) representation at each intersection

since we have locally the setup of flat space.

• Now, different intersections may have different εab’s, so different chiralities. The gauge protected
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quantity is the net number of chiral fermions (say left-handed):

(#Intersections with εab > 0)− (#Intersections with εab < 0) (32)

• The above is a topological quantity, known as the intersection number of two 3-cycles:

Iab = [Πa] · [Πb] (33)

• Iab is topological because it does not depend on the specific embedding of Πa, only on the topology

(more precisely, the homology class [Πa]). It doesn’t change as we deform the background geometry

or the D-branes:

ab
ε>0 ε<0I   =0

I   =0ab

• The spectrum is thus:

– Gauge Group: ΠaU(Na)

– Left chiral Fermions:
∑

a,b Iab(Na, N b)
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where in our convention, Iab < 0 means right-handed chiral fermions. The possibility of Iab 6= 0, 1

gives rise to an interesting mechanism of family replication.

5.3 Supersymmetry for intersecting branes

Thus, we have seen intersecting D6-branes realize a particular brane world scenario where:

• Gravity propagates in 10D

• Gauge bosons propagate in 7D

• Chiral matter propagates in 4D

So, in principle, we can consider both high and low string scale scenarios. In the former case, SUSY

at the string scale helps to protect the Higgs mass from large radiative corrections. In the latter, one

can consider the possibility of breaking SUSY at the string scale. We will focus here on N = 1 models

whose effective theory is better understood. SUSY models have the advantage that they are free of

tachyons and the brane configurations are stable. We will consider metastable SUSY breaking in next

lecture.
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So, let us analyze the conditions for the D6-brane configuration to preserve SUSY. A D-brane

preserves 1/2 of the supersymmetries but two D-branes can a priori preserve a different SUSY. The

general condition for the D6-branes to preserve SUSY is that the three-cycles on which they wrap are

special Lagrangian (sLag) defined as follows.

On a Calabi-Yau manifold there exist a covariantly constant holomorphic three-form, Ω3, and a

Kähler 2-form J . Locally, the holomorphic 3-form Ω3 and the Kähler form J can be defined by

Ω3 = dz1 ∧ dz2 ∧ dz3, J = i

3∑

i=1

dzi ∧ dz̄i. (34)

A three-cycle πa is called Lagrangian if the restriction of the Kähler form on the cycle vanishes

J |πa = 0. (35)

If the three-cycle in addition is volume minimizing, which can be expressed as the property that the

imaginary part of the three-form Ω3 vanishes when restricted to the cycle,

=(eiϕa Ω3)|πa = 0, (36)

then the three-cycle is called a sLag cycle. The parameter ϕa is a constant over the 3-cycle and

determines which N = 1 SUSY is preserved by the brane. Thus, different branes with different
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values for ϕa preserve different N = 1 SUSY. One can show that (36) implies that the volume of the

three-cycle is given by

Vol(πa) =

∣∣∣∣
∫

πa

<(eiϕa Ω3).

∣∣∣∣ (37)

A shift of ϕa → ϕa + π corresponds to exchanging a D-brane by its anti-D-brane, where the D-

brane really satisfies (37) without taking the absolute value. Therefore a supersymmetric cycle πa is

calibrated with respect to <(eiϕaΩ3). To obtain a globally N = 1 SUSY intersecting D-brane model

all D6-branes have to wrap sLag three-cycles which are calibrated with respect to the same three-form.

Exercise: Show that for a torus, the condition that πa is sLag reduces to θ1 + θ2 + θ3 = 0.

As mentioned, the light scalars at the intersection can be massless, massive or tachyonic:

• The massless case corresponds to a situation with some unbroken supersymmetry. The massless

scalar is a modulus whose vacuum expectation value parametrizes the possibility of recombining

the two intersecting D-branes into a single smooth one.
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• The configuration with tachyonic scalars corresponds to situations where this recombination is

triggered dynamically, as a result of tachyon condensation at the intersection.

• The configuration where all light scalars have positive squared mass corresponds to a non-supersymmetric

configuration, which is nevertheless dynamically stable against recombination. Namely, the recom-

bined 3-cycle has a volume larger than the sum of the volumes of the intersecting 3-cycles.

5.4 RR tadpole Cancellation

However, compactification also leads to new subtleties. This is because D-branes act as a source for

RR fields via the disk coupling: ∫

W p+1
Cp+1 (38)

In a compact space, the total RR charge must vanish as required by Gauss’s law.

The RR charges are characterized by the 3-cycles on which the branes wrap. Hence, the sum of the
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homological cycles wrapped by all the branes must be topologically trivial.

[πtotal] =
∑

a

Na[πa] = 0 (39)

Equivalently, one can understand this constraint as the consistency requirement of the equations of

motion for the RR fields. Keeping only terms in the spacetime action which depend on the RR 7-form

C7, we have:

SC7 =

∫

M4×X6

H8 ∧ ∗H8 +
∑

a

Na

∫

M4×πa
C7

= −
∫

M4×X6

C7 × dH2 +
∑

a

Na

∫

M4×X6

C7 ∧ δ(πa) (40)

where H8 is the 8-form field strength, H2 its Hodge dual, and δ(πa) is a bump 3-form localized on the

3-cycle. The equation of motion reads:

dH2 =
∑

a

Naδ(πa) (41)

Integrating this equation gives the tadpole constraint Eq. (39) on the homology classes.
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5.5 Anomaly Cancellation

Cancellation of RR tadpoles in the underlying string theory is important because it implies the can-

cellation of chiral anomalies in the four dimensional effective field theory. These anomalies include

the cubic non-Abelian anomalies, and mixed U(1) non-Abelian anomalies, and mixed gravitational

anomalies. Let’s discuss them one by one.

1. Cubic non-Abelian anomalies

The SU(Na)
3 anomaly is proportional to the number of fundamental minus anti-fundamental

representations of SU(N). Since the matter fields transform as bifundamentals, the cubic anomaly

is proportional to the sum of the intersection number times the number of branes:

Aa =
∑

b

IabNb (42)

It is easy to check that this vanishes due to RR tadpole cancellation. By taking the intersection

of the tadpole condition with any 3-cycle, we find

0 = [πa] ◦
∑

b

Nb[πb] =
∑

b

NbIab (43)
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as claimed. Note that the tadpole condition is slightly stronger than the absence of cubic anomalies

because it must hold even for N = 1, 2 where no cubic anomaly exists. This observation will turn

out important in phenomenological model building.

2. Mixed anomalies

What about mixed U(1)a − SU(Nb)
2 anomalies? The usual field theory triangle diagram gives a

non-zero contribution, even after using the RR tadpole conditions:

Aab ' NaIab (44)

However, in string theory there is an extra diagram known as the Green-Schwarz diagram, where

the U(1) gauge boson mixes with a 2-form which subsequently couples to two gauge bosons of

SU(N):

Exercise: Show that the following couplings arising in the KK reduction of the D6-brane world-
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volume action

Na

∫

D6a

C5 ∧ trFa,
∫

D6b

C3 ∧ trF 2
b (45)

give rise to the Green-Schwarz term which leads to a cancellation of the residual field theory

triangle anomalies.

Solutions: Introducing a basis of 3-cycles [Λk] and its dual [Λ˜̀], we can define the KK reduced

4d fields

(B2)k =

∫

[Λk]

C5, φ˜̀ =

∫

[Λ˜̀]

C3 = −δk ˜̀∗4d (B2)k (46)

The KK reduced 4d couplings read

Naqak

∫

4d

(B2)ktrFa, qb˜̀

∫

4d

φ`trF
2
b (47)

with qak = [πa] ◦ [Λk], and similarly for qb˜̀. The total amplitude is proportional to

AGS
ab = −Na

∑

k

qakqb`δk ˜̀ = . . .−NaIab (48)

leading to cancellation between both kinds of contributions.

3. Mixed gravitational anomalies: It is left as an exercise to show that for toroidal models,

the mixed gravitational anomalies cancel automatically, without the Green-Schwarz contribution.

(Exercise) This is no longer true for orbifolds/orientifolds.
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An important observation is that any U(1) gauge boson with B ∧ F coupling gets massive, with

mass roughly of the order of the string scale (more precisely, the mass MA of the U(1) is gs suppressed,

i.e., MA ∼ gsMs).

There can be several of them, and they are not necessarily anomalous. Such U(1)’s disappear as

gauge symmetries from the low energy effective theory, but remains as global symmetries, unbroken

in perturbation theory. In constructing D-brane Standard Model, we need to make sure that the

candidate for the hypercharge is not one of these massive U(1).

5.6 Phenomenological features

Before we construct more realistic examples, let us briefly mention some phenomenological features

we can extract from the examples studied so far. These features are natural in the general setup of

intersecting brane models and are not restricted only to toroidal models.
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• Proton Stability: First of all, in these models, the proton is perturbatively stable. This

is because the U(1) within the U(3) plays the role of baryon number, and is preserved as a

global symmetry, unbroken in perturbation theory though it can be broken by non-perturbative

instanton effects. In some cases, the instanton effects breaking the Standard Model baryon number

is calculable, e.g., as a Euclidean D2-brane wrapped on 3-cycles.

• Gauge Unification: These models do not have a natural gauge coupling unification, even at

the string scale. Each gauge factor has a gauge coupling controlled by the volume of the wrapped

3-cycle. Gauge couplings are related to geometric volumes, hence the moduli controlling the sizes

of these volumes are constrained by experiments.

• Electroweak Symmetry Breaking: These exists a geometric interpretation for the sponta-

neous electroweak symmetry breaking. In explicit models, the Higgs particle arises from the light

scalar at the intersections, whose vev parametrizes the possibility of recombining two intersecting

branes into a single smooth one.
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In this process, the gauge symmetry is reduced, corresponding to a Higgs mechanism in the effective

field theory.

• Yukawa Couplings: There is a natural way to generate exponential hierarchy. Yukawa cou-

plings among the scalar Higgs and chiral fermions arise at tree level in the string coupling from open

string worldsheet instantons, namely from string worldsheet spanning the triangle with vertices at

the intersections and sides on the D-branes.
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Their values are exponentially suppressed by the area of the string worldsheet in string units.

Different families are located at different intersections, leading to an exponential hierarchy in the

Yukawa couplings between different families.

5.7 Orientifolding

It turns out what we have introduced so far are not yet sufficient to construct a realistic model. We

need an extra element, namely, the orientifold planes.

So, why orientifolds? We have already seen that the total RR charge in a compact space must

vanish2. So, we need objects with negative charge. In order to preserve SUSY, these objects must also
2The discrete K-theory charges must also cancel but we will ignore this subtlety for now.
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carry negative tension. An orientifold plane has precisely these properties. Another reason to consider

orientifolds is that as it turns out, intersecting D-brane models without orientifold planes are bounded

to contain chiral exotics.

An orientifold projection flips the worldsheet orientation and reflects the spacetime coordinates. An

O-plane corresponds to the invariant subspace. More precisely, an O6-plane can be defined by the

quotient Ωσ(−1)FL where σ is an antiholomorphic Z2 involution which acts on the Kahler class J and

the holomorphic 3-form Ω3 as:

σJ = −J σΩ3 = ±Ω3 (49)

The O6-plane is localized at the fixed point of σ which is a three-cycle ΠO6.

The presence of the O-planes introduces the following changes to the gauge and matter content of

the model:

• For each D6-brane on Πa, we need to add the orientifold image wrapping σ(Πa). There are two

possibilities:

– σ(Πa) 6= Πa, then the gauge groups U(Na) of both D6-branes are identified.

– σ(Πa) = Πa, then the gauge group is broken to SO(Na) or USp(Na) depending on some

subtle choices of sign.
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• The matter spectrum also changes since there are chiral multiplets at the intersection of Πa

with σ(Πb); Πa with σ(Πa) transforming in (Na, Nb), symmetric/antisymmetric representations

respectively.

Skipping some details, this is the chiral spectrum of the orientifold model.

5.8 Getting just the Standard Model

In addition to their importance in canceling the D-brane charges, there is in fact a general argument

which shows that in the absence of O-planes, D-brane models necessarily contain SU(2) chiral exotics.

To see this, first notice that without the O-planes, the electroweak SU(2) must belong to a U(2)

gauge factor. An important point emphasized earlier is that the tadpole condition implies that the

number of fundamentals and anti-fundamentals must be equal, even for U(2) (where the 2 and the 2
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are distinguished by their U(1) charge). Now, since there are 3 families and the left-handed quarks

transform as (3, 2), they contribute altogether 9 anti-fundamentals of SU(2). The complete spectrum

must necessarily contain 9 fundamentals, three of which may be interpreted as left-handed leptons;

the remaining six doublets are however exotic chiral fermions, beyond the spectrum of the SM. There

are two ways to avoid these exotics, both involving orientifolds.

5.8.1 The U(2) case

One possibility is to exploit the fact there are two kinds of bi-fundamental fields in an orientifold

model, namely, (Na, N b) and (Na, Nb). Consider realizing the three families of left-handed quarks as

a combination of 2(3, 2) + (3, 2). The number of SU(2) doublets needed to cancel the tadpoles is 3

which is precisely the number of left-handed leptons.

Exercise: Consider four stacks of branes denoted a, b, c, d (and their images), giving rise to a

gauge group U(3)a × U(2)b × U(1)c × U(1)d. If the intersection numbers between the corresponding

3-cycles are given by:

Iab = 1 Iab′ = 2 Iac = −3 Iac′ = −3

Ibd = 0 Ibd′ = −3 Icd = −3 Icd′ = 3 (50)

60



Show that the chiral spectrum has the non-Abelian quantum numbers of the Standard Model (plus

three right-handed neutrinos). In order to reproduce exactly the Standard Model one also needs to

require that the following linear combination of U(1)’s to be massless:

QY =
1

6
Qa −

1

2
Qc +

1

2
Qd (51)

However, several comments are in order. It is important to emphasize that at this level, we have not

constructed any explicit model. In particular, we have only presented a set of intersection numbers.

We haven’t shown that there exist cycles on which the D-branes wrapped which lead to the given

intersection numbers. Moreover, even if we manage to do so, the intersection numbers only define

a local model. We still need to introduce additional hidden sector branes to cancel the tadpoles in

constructing compact models. Despite these caveats we made, it was shown that such topological data

can indeed arise in some Calabi-Yau orientifolds and Gepner constructions.

5.8.2 The USp(2) Case

Another way to avoid the SU(2) exotics is to make use of the fact that D6-branes in the presence

of orientifold planes can give rise to symplectic groups. For symplectic groups, all representations

are real, and RR tadpole conditions do not impose any constraint on the number of doublets. Since
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USp(2) ≡ SU(2), it is possible to realize the electroweak SU(2) as a symplectic group, and thus

circumvent the constraints on the number of doublets.

Again, as an exercise, you can show that the following set of branes with gauge groups U(3)a ×
USp(2)b × U(1)c × U(1)d and intersection numbers

Iab = 3 Iab′ = 3 Iac = −3 Iac′ = −3

Idb = 3 Idb′ = 3 Idc = −3 Idc′ = 3 Ibc = −1 Ibc′ = 1 (52)

give rise to the chiral spectrum of the Standard Model. The U(1) that needs to be massless in order

to reproduce the Standard Model hypercharge is

QY =
1

6
Qa −

1

2
Qc −

1

2
Qd (53)

In fact, explicit models with D6-branes on 3-cycles and these intersection numbers have been con-

structed. See Marchesano and Shiu, hep-th/0408059, hep-th/0409132. Exercise: Construct

other compact N = 1 examples with the gauge and matter content of the (supersymmetric) Standard

Model.
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5.9 M Theory Lift

The only branes we introduced in these models are D6-branes and O6-planes. They are special be-

cause they correspond to pure geometry at strong coupling (unlike other branes which carry additional

sources, e.g., M-branes or G-flux). Therefore from the number of supercharges the background pre-

serves, theN = 1 SUSY intersecting brane models are expected to lift up to M theory compactifications

on singular G2 manifolds. This is an interesting subject which I have no time to discuss. For a brief

discussion, see my review.

5.10 Summary

I hope these examples suffice to illustrate the concepts we have learned. Much of our discussions so

far have centered on the open string sector since we are interested in getting the gauge and chiral

spectrum of the Standard Model from string theory. The closed string sector is however also relevant

for low energy dynamics, and leads to an additional set of important questions. This is the topic to

which we now turn.
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Lecture III: Warped Throats & their Field Theory Duals

6 Warped Compactifications

The main such question that we have not yet addressed is the existence of moduli, massless fields with

flat potential and hence undetermined vevs. Stabilization of these moduli (namely, providing them

with a potential which fixes their vevs and give them masses) is an important question, of immediate

relevance to phenomenology and cosmology. We will begin by discussing how turning on fluxes can

stabilize moduli. Because the background flux provides a source term to the Einstein equations, its

backreaction warps the geometry of spacetime. This allows us to roughly realize the Randall-Sundrum

scenario in the context of string theory. We will view these warped backgrounds in two ways: as

string compactifications3 with a stabilized hierarchy, and as holographic duals of strongly coupled field

theories. The latter view gives us a tool to study BSM scenarios that involve otherwise uncalculable

strong dynamics. To illustrate this point, we will find a gravity dual of metastable SUSY breaking and

compute holograhically the visible sector soft terms in a SUSY mediation scenario where the messengers

are strongly coupled. If there is time, we will briefly describe a gravity dual of a technicolor-like model.
3The effective action for warped compactifications is highly subtle see, e.g., Shiu, Torroba, Underwood, Douglas, 0803.3068. In lack of time, we will not

discuss this interesting topic.
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6.1 Moduli Stabilization

Flux compactification has developed into a very broad subject. Here, we will focus on aspects which

are relevant for us. General discussions can be found in some recent reviews (e.g., [Douglas and

Kachru, arXiv:hep-th/0610102]). To be concrete, let us consider Type IIB string theory in the

presence of NSNS and RR 3-form fluxes H3 and F3. These 3-form fluxes must satisfy the Bianchi

identity

dF3 = 0 dH3 = 0 (54)

and they should be properly quantized, namely, for any 3-cycle Σ ⊂ X6

1

(2π)2α′

∫

Σ

F3 ∈ Z
1

(2π)2α′

∫

Σ

H3 ∈ Z (55)

An immediate consequence is that these background fluxes induce an effective D3 charge through

the Chern-Simons terms in the Type IIB effective action:
∫

M4×X6

H3 ∧ F3 ∧ C4 (56)

where C4 is the IIB self-dual 4-form gauge potential. This coupling implies that the flux background

contributes to a tadpole for C4, and hence the 3-form fluxes carry D3-brane charges. With proper
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normalization factor restored, the flux-induced D3 charge is:

Nflux =
1

(4π2α′)2

∫

X6

H3 ∧ F3 =
i

(4π2α′)2

∫

X6

G3 ∧G3

2Imτ
(57)

where τ = a + i/g2 is the IIB complex dilaton, and we complexify the 3-form fluxes

G3 = F3 − τH3 (58)

for convenience. The kinetic term for G3 is

V =
1

4κ2
10Imτ

∫

X6

d6yG3 ∧ ∗6G3 (59)

which induces a scalar potential. After some algebra, it can be written as:

V =
1

2κ2
10Imτ

∫

X6

d6y G−3 ∧ ∗6G
−
3 −

i

4κ2
10Imτ

∫

X6

d6y G3 ∧G3 (60)

Here G±3 is the imaginary self-dual/anti-self-dual (ISD/IASD) part of G3, i.e.,

∗6G
±
3 = ±iG±3 (61)

The second term in the potential is a topological term proportional to Nflux. They will be canceled

by other sources of RR charges in a compact model. The first term is positive definite and precisely

vanishes if the flux is imaginary self dual. Thus, the equation of motion imposes self-duality of the
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3-form flux. The ISD condition should not be regarded as an additional constraint on the flux but

rather a condition on the moduli. For fixed flux quanta, only when the ISD condition is satisfied would

the moduli minimize the potential.

In 4D EFT language, the potential V above can be derived as an F-term from the Gukov-Vafa-

Witten superpotential:

W =

∫

X6

G3 ∧ Ω (62)

which depends only on the complex structure (shape) moduli and the dilaton and vanishes if these

moduli are chosen such that G3 is ISD. Thus all such moduli are generically stabilized. Ω here is

the holomorphic 3-form. We can decompose the 3-form flux G3 in terms of the Hodge cohomology

according to the complex structure of the Calabi-Yau. The ISD condition implies that G3 consists of

only (2, 1) and (0, 3) forms. The (2, 1) component of the flux preservesN = 1 SUSY whereas the (0, 3)

component breaks SUSY while preserving the no-scale structure. We can see this from the F-term

equation for the Kahler modulus ρ

0 = DρW ∼ W =

∫
G3 ∧ Ω⇒ G = G(2,1) (63)
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Indeed, G(0,3) induces a gravitino mass4of the order:

m2
3/2 ∼

|G3 ∧ Ω|2
ImτV ol(M6)2

(64)

6.2 Warped Throats

Besides stabilizing moduli, another appealing feature of fluxes is that they backreact on the metric

leading to a non-trivial warp factor, and strongly warped throats can be generated. These warped

geometries appear not only in the Randall-Sundrum scenario, they are heavily used in the construction

of string inflationary scenarios and in finding holographic duals of strongly coupled gauge theories.

With these motivations in mind, we now discuss how this picture:
4The factors in the denominator come from eK where K is the Kahler potential.
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can be roughly realized in string theory. Unlike the Randall-Sundrum scenario, the bulk will be SUSY.

We will, however, put SUSY breaking on the IR brane eventually.

6.3 A Confining Gravity Dual

To realize this picture, we need a background with both an IR cutoff and a UV cutoff. As we have seen

in Eduardo’s lectures, the energy scale redshifts as the warp factor along the holographic direction.

An IR cutoff on the the warp factor implies a minimal energy scale. The interpretation is that the

field theory dual develops a mass gap at low energies. Likewise, a UV cutoff implies a maximal energy

scale, beyond which the field theory is coupled to strings and quantum gravity. The “UV brane” can

therefore be thought of as summarizing the rest of the compact geometry.
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6.3.1 AdS/CFT at the Conifold

We already know, by considering N D3-branes at a smooth part, that N = 4 SYM is dual to string

theory on AdS5×S5. The N = 4 SYM can be seen from the open string perspective as the low energy

degrees of freedom living on the branes, while AdS5× S5 is the near horizon limit of the closed string

background.

How do we get other examples? Any smooth point looks the same in the near horizon limit. So, we

must place D3-branes at a singular point!

Perhaps the simplest next case is to consider D3-branes at orbifold singularities (like what we did

in the first lecture), but more useful for us will be the conifold which can be defined as a submanifold

of C4:
4∑

i=1

z2
i = 0 (65)

The conifold singularity arises in many compact Calabi-Yau spaces. We can see that it is singular at

(z1, z2, z3, z4) = 0 because the normal space is ill defined.5 We can picture the conifold singularity as

a cone over S3 × S2. The fact that it is a cone is obvious because if zi satisfy the above equation,

so does λzi for any complex constant λ. To identify the base of the cone, we can intersect it with a
5In general, a variety defined by f(zi) = 0 in C4 is singular at f = df = 0 since the normal space (associated with df) is ill defined.
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seven-sphere in R8:
∑

i |zi|2 = r2. At the singular point, both the S3 and S2 shrink to zero size.

To make the translation to the field theory dual more direct, let us do a linear change of variables.

We can describe the conifold as:

z1z2 − z3z4 = 0 (66)

This equation can be “solved” by writing:

z1 = A1B1 , a2 = A2B2 , z3 = A1B2 , z4 = A2B1 (67)

But we get the same zi if we act by:

Ak → λAk , B` → λ−1B` , k, ` = 1, 2 (68)

where λ ∈ C∗. The SO(4) = SU(2) × SU(2) symmetry of the conifold is easy to describe in this

formulation: one acts on the Ak, and one on the B`. If we write,

λ = seiα , s ∈ R+, α ∈ R (69)

then away from the singular point zi = 0, s can be selected to set

|A1|2 + |A2|2 = |B1|2 + |B2|2 (70)

To get the conifold, we must divide by the U(1):

Ak → eiαAk , B` → e−iαB` , (71)
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since it keeps the coordinates zi unchanged.

6.3.2 Dual CFT to N D3 at Conifold (Klebanov-Witten)

We are now ready to find the field theory dual corresponding to placing N D3-branes at the conifold

singularities (Klebanov, Witten, hep-th/9807080). Consider the N = 1 SUSY gauge theory

with U(1) gauge group and the following matter content:

Field Charge

A1,2 +1

B1,2 -1

The D-term equation for this theory is:

D = |A1|2 + |A2|2 − |B1|2 − |B2|2 = 0 (72)

Then the moduli space is given by setting D = 0 and dividing by the U(1):

Mvacua = {D = 0}/U(1) (73)

So this gauge theory gives the confiold as its moduli space of vacua.

However, this cannot be the whole story. This U(1) is Higgsed, but a D3-brane should have an

unbroken U(1) on its worldvolume. We really should introduce another U(1) All chiral multiplets
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Field U(1) U(1)

A1,2 +1 −1

B1,2 −1 +1

are neutral under the diagonal U(1), which thus decouples and is the expected unbroken U(1) on the

3-brane worldvolume. The other U(1) is the same as before. Thus this SUSY gauge theory describes

a single D3-brane placed at the conifold.

What about the theory corresponding to N D3-branes? The natural guess is that the gauge group

should be U(N)× U(N) with chiral fields:

Field U(N) U(N)

A1,2 N N

B1,2 N N

Here, the SU(2) × SU(2) and U(1)R quantum numbers of these fields are suppressed. Naively, a

renormalizable superpotential is not possible, so as a first guess we suppose W = 0. We can think

of Ak and B` as N × N matrices and in some basis, they are diagonal with distinct eigenvalues,

corresponding to a family of vacua parametrized by the positions of N D3-branes at distinct points

on the conifold. The gauge group is broken down to U(1)N , one factor of U(1) for each 3-brane. But

this cannot be the whole story, since there exists massless charged chirals which should not be present
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for N D3-branes at generic smooth points. So we need a superpotential!

The lowest order single trace SU(2)× SU(2) invariant is:

W =
λ

2
εijεk`TrAiBkAjB` (74)

This does the job. The A and B both have R-charge 1/2 and so the superpotential has R-charge 2

as desired. The CFT is strongly coupled. The conformal dimension of A and B are 3/4 and not 1 as

they receive large anomalous dimension.

6.3.3 Perturbing to get a confining theory (Klebanov-Strassler)

Since the conifold is a cone over S3×S2, we can consider in addition to N D3s, having M D5s on S2.

The resulting gauge theory is:
with the same superpotential as before. What about its dynamics?

QFT side: Cascade of Seiberg dualities
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Field SU(N+M) SU(N)

A1,2 N+M N

B1,2 N + M N

Recall that Seiberg duality is the statement that an SU(Nc) theory with Nf flavors at strong

coupling can be transformed to a weakly coupled dual SU(Nf −Nc) theory with Nf flavors plus some

mesons:

SU(Nc) −→ SU(Nf −Nc) + “mesons”

Nf flavors strong coupling Nf flavors (75)

Here the gauge factor that runs to strong coupling is the SU(N + M) (since it has relatively less

Nf than Nc compared to the other factor):

“Nc” = N + M “Nf” = 2N (76)

The dual gauge group is then SU(2N − (N +M)) = SU(N −M). Therefore, under Seiberg duality,

the roles of the gauge groups are interchanged:

SU(N + M)× SU(N)→ SU(N)× SU(N −M) (77)

We can check that the field content is also self-similar, as is the superpotential W (the “mesons” are
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massive and can be integrated out) at each step. Therefore, the product gauge groups undergo a

duality cascade with N → N −M at each step.

What is the end of the cascade? Let’s consider N = KM . Then eventually, we reach a step:

SU(2M)× SU(M)→ SU(M) (78)

The end of the cascade is a pure gauge theory!

This N = 1 pure SU(M) gauge theory has the following well known properties:

• A non-perturbative superpotential W = Λ3
SU(M).

• It has M vacua (Witten index is M), rotated by phase rotations of Λ.

Gravity Side:

We now turn to the gravity side to understand this cascade. Klebanov Strassler worked out the

supergravity background (we will see more explicitly later) but the essential physics is as follows.

The modification from KW to KS is that the conifold is deformed:

4∑

i=1

z2
i = ε2 (79)
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i.e., the S3 has a finite size. We call this 3-cycle A and its dual (non-compact) 3-cycle B. The D3 and

D5 branes are replaced by fluxes:

1

2πα′

∫

A

F3 = 2πM
1

2πα′

∫

B

H3 = −2πK (80)

and so N = KM . We see that the D3 and D5 charges match (if N 6= KM for K ∈ Z+, there are

probe D3-branes left).

What do these fluxes do to the moduli? A superpotential is induced:

W =

∫

M
G3 ∧ Ω =

∫

M
(F3 − τH3) ∧ Ω =

∫

A

F3

∫

B

Ω + τ

∫

B

H3

∫

A

Ω (81)

where the sign flip in the last term is due to the ordering of A and B. The integrals appearing here

are the periods defining the complex structure of the conifold. In particular, the complex coordinate

for the collapsing A cycle is defined by

z =

∫

A

Ω (82)

The integral over the B-cycle can be determined from the monodromy around z = 0 where the A-cycle

shrinks (as z → e2πiz, A→ A but B → B + A). The result is:
∫

B

Ω = G(z) =
z

2πi
ln z + holomorphic (83)
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Putting things together, the superpotential is then

W = (2π)2α′ (MG(z)−Kτz) (84)

Consider the F-term equation

0 = DzW ∝M∂zG −Kτ + ∂zK(MG −Kτz) (85)

where K is the Kahler potential. Here z ∼ ε#; A is a vanishing cycle as one approaches conifold point

ε→ 0, z → 0.

DzW ∝
M

2πi
ln z − iK

gs
+O(1) (86)

It follows that for K/Mgs >> 1, z is indeed exponentially small,

z ∼ exp(−2πK/Mgs) (87)

Thus, we obtain a hierarchy of scales if, for example, M = 1 and K/gs is of order 5. Actually, there

are M vacua related by the phase of z (This is because of the monodromy B → B + A,
∫
B F3 is

defined mod M). Note also that z = A-cycle volume is near conifold in moduli space (But the warp

factor keeps the SUGRA approximation valid).

To determine the actual warp factor requires solving the supergravity equation of motion, but one
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can estimate it as follows. The warp metric for a D3-brane is:

ds2 =
( r
R

)2

ds2
4 +

(
R

r

)2 (
dr2 + r2dΩ2

5

)
where R4 = 4πgsN(α′)2 (88)

where r is the distance (in unwarped metric) from the D3-branes located at r = 0. The deformation

parameter sets a minimum for r and hence the warp factor eAmin:

eAmin ' rmin ' z1/3 ' exp(−2πK/3Mgs) (89)

Thus the warped IR scale is the scale of gluino condensate in the N = 1 pure YM at the end of the

cascade!

To summarize, the background fluxes generate and stabilize an exponent hierarchy. The role of the

IR and UV branes in RS are played by the S3 of the deformed conifold and the bulk geometry.

6.3.4 The IR Geometry

So, how does the SUGRA solution look like in the IR? More will come in the next lecture, here we

sketch the result.

The metric on the conifold is deformed by the fluxes:

ds2 = a2
0dxµdx

µ + gsMb2
0

(
dr2 + dΩ2

3 + r2dΩ2
2

)
(90)
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where

a2
0 ∼

ε4/3

gsM
, ε ∼ e−πK/gsM ; b0 ∼ O(1) (91)

The S3 has a finite size while the S2 collapses at the tip. The 3-form RR flux F3 is non-vanishing on

S3:

F3 ∼ fεijk f ∼ 2√
g3
sMb0

(92)

We will discuss in the next lecture how to introduce SUSY breaking states in this geometry, in both

open and closed string descriptions.
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Lecture IV: Holographic Applications in String Model Building

In this lecture, we will discuss how holography can be used to study BSM scenarios which involve

strong coupling dynamics. We will illustrate this approach by calculating soft terms in a SUSY breaking

scenario where the messengers are strongly coupled. If there is time, we will describe how one might

construct gravity duals of technicolor-like theories.

6.4 Holographic SUSY Breaking

SUSY is arguably the leading candidate for physics BSM. Among its many appeals is its calculability as

an effective theory. Although strong coupling physics is often involved in SUSY breaking, its influence

on the visible sector can be parametrized by a set of soft terms in a weakly coupled theory. The

perturbativity of these weakly coupled models make them more amendable to quantitative studies.

Even in specific SUSY mediation scenarios where we specify how the effects of strong coupling physics

get transmitted to the visible sector,
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A standard paradigm for SUSY model 

building involves a “hidden sector” where

SUSY breaks, and then messenger fields

which transmit this breaking to the 

Standard Model:

I.  Introduction

SUSY Breaking and Mediation

! In DSB, the hidden sector is strongly coupled.

!Depending on the mediator, we may or may not need to deal 

with the details of strong coupling dynamics.

! In gravity mediation, SUSY is parametrized by a spurion field:

m0 ∼ m1/2 ∼ m3/2 ∼ F

MP
〈X〉 = M + θ2F

we don’t necessarily need to know all the details of its dynamics. For example, in gravity mediation,

the effect of SUSY breaking is summarized by a spurion field:

< X >= M + θ2F (93)

The messengers, which feel directly the effects of SUSY breaking, couple to the visible sector gravita-

tionally:

m0 ∼ m1/2 ∼ m3/2 ∼
F

MP
(94)

As far as the visible sector is concerned, the physics is weakly coupled. This calculability as an EFT

however does not mean that finding a UV complete model is easy. This is because the soft terms in

gravity mediation are all generated by Planck suppressed operators. Any Planck suppressed corrections

to the effective action, including those of the Kahler potential which is not protected by holomorphy

can contribute. Other than the UV sensitivity, these Planck suppressed operators generically give

unacceptable flavor mixing terms:
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The Flavor Problem

• The hierarchy suggests that if SUSY is realized, it is softly broken:

L ! m2
ijφ

iφj∗

• Such terms generically give unacceptable flavor mixing:

µ̃R

ẽR
!

B
µ− e−

• Flavor-blind soft terms come naturally from gauge mediation.

[Dine, Fischler, Nappi, Ovrut, Alvarez-Gaume, Claudson, Wise...]

This is where gauge mediation ( Dine, Fischler, Nappi, Ovrut, Alvarez-Gaume, Claudson,

Wise,...) comes in. The flavor problem is naturally solved in gauge mediation because the mes-

sengers couple to the visible sector through the usual Standard Model gauge interactions which are

flavor-blind.

Minimal Gauge Mediation (Dine, Nelson, Nir, Shirman)

In the simplest model of gauge mediation, known as minimal gauge mediation, the messengers are

assumed to be neutral under the hidden sector gauge group. They talk to the hidden sector only

through superpotential couplings.
Minimal Gauge Mediation

• Minimal model [Dine, Nelson, Nir, Shirman,...]

Hidden Messenger Visible

X

A,λ
q, q̃
. . .Superpotential

Visible Sector

Gauge

• Hidden sector spurion parameterizes SUSY breaking

• Visible sector soft terms via quantum effects

W ! Φ̄XΦ

〈X〉 = M + θ2F

Φ

Ψ
λ λ

Φ,Ψ

Messengers are weakly coupled
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Our ignorance of the strongly coupled hidden sector is again parametrized by the vacuum expectation

of some spurion field X . Because the messengers are not charged under the hidden sector gauge group,

they are weakly coupled and their effects are easy to compute:

Minimal Gauge Mediation

• Minimal model [Dine, Nelson, Nir, Shirman,...]

Hidden Messenger Visible

X

A,λ
q, q̃
. . .Superpotential

Visible Sector

Gauge

• Hidden sector spurion parameterizes SUSY breaking

• Visible sector soft terms via quantum effects

W ! Φ̄XΦ

〈X〉 = M + θ2F

Φ

Ψ
λ λ

Φ,Ψ

Messengers are weakly coupled

This gives a rather simple prediction of the gaugino masses

mλr ∼ αr
F

M
, r = 1, 2, 3 (95)
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Direct Gauge Mediation

However, this is not the only type of gauge mediation. In fact, the original idea of gauge mediation

is direct mediation. In direct gauge mediation, the messengers are charged under the hidden sector

and they participate in SUSY breaking. Not only does the distinction between messengers and hidden

sector become less clear, in order to get this scenario to work, one often needs to come up with rather

complicated models. More importantly, the messengers are strongly coupled and their effects on the

visible sector are difficult to compute.

Semi-direct Gauge Mediation (Seiberg, Volansky, Wecht)

More recently, a variation of this old idea was proposed. It was named semi-direct gauge mediation

by its inventors because it is a compromise between the minimal and direct models.

Semi-Direct Gauge Mediation

• Semi-direct gauge mediation [Seiberg, Volansky, Wecht] is a compromise 

between the minimal and direct models.

Hidden Messenger Visible

• Messenger sector fields do not participate in dynamical breaking of SUSY but 

are charged under hidden sector and visible sector group.

• More flexibility in solving model building, but still involves strong coupling.

The messengers are charged under the hidden sector (just like direct mediation), but they do not
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participate in SUSY breaking. This gives more flexibility in model building, though the computation

of soft terms still involves strong dynamics. For example, in semi-direct gauge mediation, one would

expect the visible sector soft terms to receive corrections at all orders of hidden sector loops.

• In many models, SUSY breaking is triggered by strong dynamics and 

perturbative techniques are not directly applicable.

• Example: In semi-direct scenario, visible sector soft terms receive large 

corrections at all orders of hidden sector loops.

λ

Ψχ

χ

λ

λ

Ψχ

χ

λ

λ

Ψχ

χ

λ

λ

Ψχ

χ

λ

λ

Ψχ

χ

λ

• Modern tools to study strong coupling physics: Seiberg duality, Holography, ..

Strongly Coupled Messengers

Computing these contributions by brute force is clearly a formidable task. To study scenarios with

strongly coupled messengers, we need a better tool than conventional perturbative techniques.

Holographic Gauge Mediation

One of these tools is holography. The idea is to find a gravity dual of the strongly coupled hidden

sector and compute holographically the soft terms. But first, what kind of gravity dual would have

potentially a state that breaks SUSY at exponentially small energies?

The natural idea is to start from the most explicit known gravity dual of a confining gauge theory,
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i.e., the warped deformed conifold. Given the tiny warped scale at the IR, one might expect to be

able to locally break SUSY there to generate an exponentially small SUSY breaking scale. One way

of breaking SUSY locally is to introduce an D3 brane.

Brane-Flux Annihilation

But the KS background carries D3-charge, would the D3 be annihilated? With the explicit KS

solution, we see that the D3-charge is radially dependent and near the tip:

dF5 = H3 ∧ F3 ,

∫
F5 = gsM

2τ 2 + . . . (96)

At the tip, there are no D3-branes and so putting p D3 there is perturbatively stable.

But this is too quick. There is another state, visible in the same gravity theory, with the same

charges: KS solution with Ñ = (K − 1)M , M̃ = M and M − p D3-branes. Although there is no D3-

charge locally to annihilate the D3 branes, there exists a brane/flux annihilation process (Kachru,

Pearson, Verlinde) that allows the SUSY breaking state to decay to the SUSY state described

schematically by this picture:
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Brane-Flux Annihilation

• If there were D3-branes present, the D3-D3 pairs would annihilate into closed 

strings via tachyon condensation.

• At the bottom (          ) of KS, there are no D3-branes, so an D3-brane at the 

bottom can be perturbatively stable (provided that p<<M).

• Although perturbatively stable, the KS+D3s system can tunnel into a SUSY 

state via bubble nucleation. [Kachru, Pearson, Verlinde]

τ = 0

Naturally, to keep the asymptotic charges 

the same, something else must change as 

well: in this case, the flux which threads 

the “dual” cycle.  So the full relationship 

between these vacua is described by the 

schematic picture:

.

S
3 NS5

NS5
M!p D3

= K!1H

B
3= KH

B
3

p D3

Figure 2: The giant inflaton starts as a bound state of p anti-D3’s, and expands due to
the 3-form flux. Near the slow roll region of the potential, its expansion slows down due
to a balance between the 5-brane tension and the dielectric force. Eventually, the 5-brane
decays to a supersymmetric state with M−p D3-branes.

ignored. Taking this backreaction into account is the goal of §4.

3. Interbrane Attraction from Flux Polarization

In this section, we will compute the leading order polarization of the background ISD

three-form flux on the S3 by a stack of D3-branes, and demonstrate how this induces an

attractive force on other anti-branes. We find it useful to define the following combinations

of supergravity fields:

Φ± ≡ e4A ± α , G± ≡ iG ± ∗6G . (21)

The supergravity equations of motion then become (we assume τ = i/gs for simplicity)

∇̃2Φ± =
g2

se
2A

24
|G±|2 + e−6A|∇Φ±|2 + 4gsκ

2
10µ3

e2A

√
g6

∑

i±

δ6(y − yi±) , (22)

d(Φ+G−) = d(Φ−G+) , (23)

where κ2
10 is the 10D gravitational constant and i+ and i− label D3- and D3-branes,

respectively. The branes couple to the bulk fields as

S3± = −T3

gs

∫
d4x

√
g4 Φ∓ . (24)

11

Then, since D3 charge receives a 

contribution from              ,  all is well.F3 ∧ H3

The 3-form flux polarizes the anti D3-branes into an NS5-brane. The SUSY breaking state can

therefore decay via nucleation of a bubble of supersymmetric vacuum surrounded by a spherical NS

5-brane domain wall. This picture is reliable only if p << M ; otherwise, the blob of the expanded D3

is bigger than the space at the tip! For p << M , the tunneling rate, determined by this instanton, is

exponentially small giving evidence that the state is metastable.

Back-reacted Solution

To study holographically this metastable SUSY breaking state, we should find the back-reacted

solution of p D3 branes in the KS background. Furthermore, according to the usual gauge/gravity

dictionary, if the SUGRA fields sourced by the D3-branes are normalizable modes, then the field

theory dual is a SUSY breaking state. If the SUGRA fields are not normalizable, then the field theory

dual corresponds to a different field theory. Since p << M , the backreaction can be treated as a

perturbation. Here are some upshots if one goes about and solve for the back-reacted solution:
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• Solution in the entire conifold is difficult to find, but solution in the UV (DeWolfe, Kachru,

Mulligan) and IR regions (McGuirk, Shiu, Sumitomo) have been obtained.

• In the UV region, the perturbations were found to fall off faster than the unperturbed fields, e.g.,

δh/hKS ∼ r−4, etc.

• There has been a recent contradicting claim (Bena, Grana, Halmagyi) that the perturbations

are non-normalizable if some IR boundary conditions (vanishing of H3) are imposed. However,

the b.c. turn out to be too restrictive6.

• In all these analysis, an ansatz respecting the isometry of KS was chosen, e.g.:

ds2
10 = h−1/2ηµνdx

µdxν + h1/2
(
p(τ )dτ 2 + u(τ )g2

5 + q(τ )
(
g2

3 + g2
4

)
+ s(τ )

(
g2

1 + g2
2

))
(97)

(similar ansatz for fluxes, dilaton). Here, gi are some angular 1-forms. To preserve the isometry,

the D3 are smeared over the S3.

• To linear order in perturbations, the solution in the IR is:

δh ∼ δq ∼ δu ∼ δs ∼ S
τ

+O(τ ) , S ∼ pTD3

(gsM)2
(98)

6In fact, our IR analysis showed that a non-vanishing H3 follows from the equations of motion.
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(similarly perturbations for fluxes and dilaton). The singular behavior accounts for the localized

source. Detailed expressions can be found in McGuirk, Shiu, Sumitomo. To summarize the

main features:

– The angular geometry is squashed, internal metric is not conformally Calabi-Yau.

– 3-form flux is non-ISD and has all SUSY breaking components: (1, 2), (0, 3), (3, 0).

– The dilaton has a non-trivial profile, but vanishes in the IR: δΦ ∼ Sτ .

• Similar behavior in the UV (DeWolfe, Kachru, Mulligan), though with simpler squashing and

only (2,1) and (1,2) fluxes are sourced.
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Visible Sector

Now, let us introduce the visible sector and the messengers. An SU(K) flavor group of the hidden

sector can be introduced by adding K D7-branes to the SUSY breaking background we just found:Visible Sector

D3 D7s

ε µ

Figure 3: The SM gauge fields live in the worldvolume of D7-branes.

coordinates zi in which the defining equation of the deformed conifold geometry is

4∑

i=1

z2
i = ε2, (2.2)

then we embed a stack of K D7-branes on the divisor defined by the equation

z4 = µ . (2.3)

The extended quiver which captures the field content of the gauge theory dual to K

such D7-branes in the warped deformed conifold geometry is shown in Figure 4. In the

non-compact throat, the SU(K) gauge group on the D7’s is a global (flavor) symmetry

group, and the additional matter fields are flavors in the SU(N + M) × SU(N) gauge

theory. When the throat is glued into a compact Calabi-Yau manifold, the SU(K)

becomes weakly gauged.

N KN+M

A1,2

B1,2 χ

χ̃

⊃ SU(5)

Figure 4: Quiver diagram for the conifold flavored by Kuperstein D7-branes.

The superpotential of the flavored theory becomes6

6This expression can be obtained from the N = 2 parent theory, where the superpotential is fixed,

upon mass deformation for the adjoint scalars. Strictly speaking, (2.4) is correct for U(N) groups

while for SU(N) there are 1/N suppressed double trace terms.

8

• SU(K) flavor group can be added by introducing K D7-branes.

• The flavor group can be weakly gauged by cutting off the warped space (or 

more accurately, by gluing to the rest of the Calabi-Yau).

• The visible sector is a subgroup of SU(K).

Although the coupling of the SU(K) flavor group is zero when the 7-branes are non-compact, the

flavor symmetry is weakly gauged once the theory is compactified. The visible sector is a subgroup of

this weakly gauged SU(K) symmetry7.

A D7-brane has codimension 2 and can be defined by a complex equation. We will consider a simple
7We will work in the probe approximation, i.e., K << M to neglect the D7-brane backreaction.
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choice of D7-brane embedding given by this holomorphic equation:

z4 = µ “Kuperstein embedding” (99)

Other embeddings (e.g., Ouyang, Karch-Katz) defined by other holomorphic equations generally

require worldvolume flux to minimize the brane tension (Chen, Ouyang, Shiu). Holomophicity is

not a sufficient condition because of the non-vanishing B2 in the background.

Besides the visible sector fields, adding D7-branes introduces messenger quarks whose masses are

set by the scale µ.

Wconifold = λ1ε
ijεkltr (AiBjAkBl)

Wmess = χ̃a (A1B1 + A2B2 − µ)χa

+ λ2χ̃χχ̃χ

χ χ̃

D3 D7s

ε µ

Figure 3: The SM gauge fields live in the worldvolume of D7-branes.

coordinates zi in which the defining equation of the deformed conifold geometry is
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i=1

z2
i = ε2, (2.2)

then we embed a stack of K D7-branes on the divisor defined by the equation

z4 = µ . (2.3)

The extended quiver which captures the field content of the gauge theory dual to K

such D7-branes in the warped deformed conifold geometry is shown in Figure 4. In the

non-compact throat, the SU(K) gauge group on the D7’s is a global (flavor) symmetry

group, and the additional matter fields are flavors in the SU(N + M) × SU(N) gauge

theory. When the throat is glued into a compact Calabi-Yau manifold, the SU(K)

becomes weakly gauged.

N KN+M
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⊃ SU(5)

Figure 4: Quiver diagram for the conifold flavored by Kuperstein D7-branes.

The superpotential of the flavored theory becomes6

6This expression can be obtained from the N = 2 parent theory, where the superpotential is fixed,

upon mass deformation for the adjoint scalars. Strictly speaking, (2.4) is correct for U(N) groups

while for SU(N) there are 1/N suppressed double trace terms.
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N + M N K

A1,2

B1,2

χ

χ̃

Figure 2: Quiver for the high energy theory. The standard model gauge group is a subgroup of the

global SU (K).

λ

Ψχ

χ

λ

Figure 3: A very small sample of the infinite number of loops that might contribute to the visible

sector gaugino mass. The gaugino couples to the messenger quarks Ψχ and squarks χ which also

couple to the large ’t Hooft coupling hidden sector gluons and gluinos. Since the hidden sector has

large ’t Hooft coupling, there are leading order contributions from planar diagrams with arbitrary

numbers of loops. The calculation can be done holographically and, to leading order in the SUSY-

breaking parameter, the loops cancel for mχ ! Λε. However, for mχ ≈ Λε, the cancellation no longer

occurs.

messenger quarks are charged under the large ’t Hooft hidden sector, there are potential

contributions to the visible sector gaugino mass from all planar diagrams (Fig. 3).

Since the analysis of [25] was performed at large radius on the gravity side, the dual

field theory is in a regime where the messengers are much heavier than the confining scale

of the strongly coupled hidden sector, mχ ! Λε, and for many parts of that analysis, it is

appropriate to neglect ε. In the absence of the deformation of the conifold singularity, the

R-symmetry preserved by the geometry is Z2M [36, 37]. This large amount of R-symmetry

suppresses contributions to the gaugino mass from scales above the messenger mass5. A

non-vanishing messenger mass µ, which has unit R-charge, breaks R-symmetry altogether.

However, the R-symmetry breaking effect seems to be small and indeed in [25] the messenger

5The gaugino mass m1/2 carries two units of R-charge, implying that any R-symmetry larger than Z2

forbids a non-vanishing m1/2.

– 6 –

•     and     act as messengers of SUSY breaking:

!charged under both visible and hidden sector groups

!do not participate in creating of SUSY-breaking state

• This setup is a gravity dual of semi-direct gauge mediation.

Messengers

The messenger quarks are bi-fundamental fields denoted by χ and χ̃ here. They are charged under

both the visible and hidden sectors, but they do not participate in creating the SUSY breaking state.

This setup is therefore a gravity dual of semi-direct gauge mediation.

Standard Model Matter
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As discussed in Lecture II, the chiral matter of the Standard Model lives at the intersection of branes

(and a worldvolume field strength supported on the two-cycle at which they intersect is also needed

to obtain chiral fermions):

Chiral Matter resides at the intersection of D7-branes, and gauge 

field strengths on the worldvolumes are also needed.

And in fact, to get the right charged matter 

(in this case, say, 5s of SU(5)), we add 

“flavor branes” which intersect the SM D7 

on curves:

Comments:

Gaugino mediation ↔ Gauge mediation w/ many mes-
sengers. Landau pole problem is also present in our
model: the D7 can not extend far inside the KS throat.

So far, we imagined that the Higgs and charged MSSM
fields reside inside the CY. However, we can also place
the light generations in the IR. In 4-d, they become
composite, and feel the SUSY breaking more strongly.

D3

D7

CY
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To get charged matter with quantum numbers of the

light quarks, we place another set of D7s in the coni-

fold, that intersect with the K D7s. The intersection

extends radially, but there exists an open string zero

mode that is localized in the IR. Its fermionic compo-

nent is massless, the scalar acquires a non-zero mass.

D3

D7s

D7

D7

2D  INTERSECTION

16

We’ll argue that the compositeness or 

elementarity of a given matter multiplet, 

depends on the minimal radial location of 

the intersection.  (Note that one must turn 

on gauge field strengths to get chiral 

matter).

Degree of compositeness depends on location of intersection.

Standard Model Matter

The degree of compositeness depends on the location of the intersection. If the branes intersect in

the UV, the corresponding matter fields are “elementary”. If they intersect in the IR, the corresponding

matter fields are composites in the field theory dual.

Model Building Features

Before we compute holographically the soft terms, let us contrast what we have found with a 5D
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phenomenological approach, and extract some novel features for model building.

• The first new feature is that unlike the warped models considered in the phenomenological lit-

erature, the gauge fields and the gauginos do not live in the entire bulk. They end where the

D7-branes end. Therefore, the gaugino mass is more tunable, given a fixed IR SUSY breaking

scale. We will consider two cases: (i) mχ >> Λε, (ii) mχ ∼ Λε.

• Another feature is that the matter fields are not bulk fields. They are not even fields living in

the bulk of the D7-branes. The matter fields reside at the intersection of D7-branes, and are

expected to be localized at the IR end of the intersection. This gives us rather rich model building

possibilities as the Standard Model can be part composite and part elementary. For simplicity,

however, we will assume here that all the Standard Model matter fields are elementary, i.e. they

live in the UV.

• One more feature to point out is that the SM and the SUSY-breaking branes can be separated by

a large physical distance even for a small coordinate separation in the holographic direction:
1

gsM
<< τ < 1 (100)

This is because the size of the S3 at the tip R2
S3 ∼ gsM is large in string units. The D7-branes

can dip down to very small τ within the validity of SUGRA.
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Calculating Soft Terms

Let us finally turn to the computation of soft terms. On the gravity side, the gaugino masses can

be calculated by analyzing how the worldvolume fields on the D7-branes react to the SUSY breaking

background. Our final answer would correspond to summing all-loop planar diagrams on the gauge

theory side.

In this gravity dual, the gaugino masses are the most straightforward to compute. The squarks and

the sleptons are localized at the brane intersection and so their masses are harder to obtain from a

worldvolume analysis. Nevertheless, if we assume the visible sector sftermions to be living in the UV,

their dominant mass contributions should come from gaugino mediation which can be computed in

field theory. We will consider the two cases (i) mχ >> Λε, (ii) mχ ∼ Λε in turn.

Case 1: Large Messenger Mass, i.e., mχ >> Λε

On the field theory side, the gaugino mass comes from loops. Schematically:

m1/2 =

∫ Λε

0

d4p +

∫ mχ

Λε

d4p +

∫ ΛUV

mχ

d4p (101)

Below the hidden sector confinement scale, the hidden sector and messenger fields are decoupled

and do not contribute to the gaugino mass. Between the confinement scale and the messenger mass,
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the effective degrees of freedom are the messenger mesons. They are bound states of the messenger

quarks and transform in the adjoint representation of the flavor group. If the hidden sector group has a

large rank, these mesons are weakly coupled (’t Hooft; Witten). Therefore, the usual perturbative

expression for gauge mediation applies:

m1/2 =
g2
visK

16π2

∑

n

Fn
Mn

(102)

There is nothing holographic about this gaugino mass except that the masses of the messenger mesons

Mn and their F-terms Fn which are often just parametrized in gauge mediation can be computed

holographically (see Benini et al for detailed expressions).

Above the messenger mass, the messenger quarks can no longer be integrated out. These messenger

quarks are charged under the hidden sector and are therefore strongly coupled. They cannot be

analyzed using standard perturbative techniques. However, their effect on the gaugino masses can be

computed on the gravity side from the pullback of the SUSY breaking background on the D7-brane

worldvolume. A direct calculation shows that this contribution vanishes. Why?

Field Theory Explanation: For µ >> ε, the 7-branes are in the UV region of the KS geometry

(i.e., Klebanov-Tseytlin) where the isometry group is SO(4)× Z2M . The U(1) isometry is broken

to Z2M in the UV by the RR flux, and to Z2 in the IR by the deformation parameter. On the field
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theory side, this surviving Z2M R-symmetry forbids a non-vanishing gaugino mass. One may say that

the messenger mass already breaks R-symmetry completely. However, for energies above the messenger

mass, this effect can be neglected and the surviving R-symmetry should largely be determined by the

isometry of the background.

Case 1: Small Messenger Mass, i.e., mχ ≈ Λε

Now consider the case where the messenger mass is comparable to the hidden sector confinement

scale. This corresponds to having the D7-branes come closer to the D3 branes. To calculate the

soft terms, we make use of the supergravity solution in the IR region we just found. This is also a

potentially more interesting parameter regime because the R-symmetry is reduced to Z2 which allows

for a gaugino mass.

We will also make use of some results on the fermionic D-brane action obtained earlier (for details,

see Marchesano, McGuirk, Shiu). We can divide the holographic computation of the gaugino mass

into 5 smaller steps. The complete calculation is rather involved, so we will sketch only part of the

steps here.

• Step 1: Getting the unperturbed gaugino wavefunction:

We first solve the gaugino equation of motion in the unpertubed SUSY background. Since we
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are working to first order in perturbations, we can calculate the gaugino mass to this order by

inserting the unperturbed wavefunction into the perturbed D7-brane action. The perturbation of

the gaugino wavefunction contributes in higher order.

The light fermionic degrees of freedom on D7-branes can be represented by a doublet of 10D

Majorana-Weyl spinors:

Θ =

(
θ1

θ2

)
(103)

The advantage of doubling the fermionic degrees of freedom is that a symmetry of the fermionic

action, known as κ symmetry, becomes more manifested. In terms of the bispinors, the fermionic

action takes the form (Martucci, Rosseel, Van der Bleeken, Van Proeyen):

S fer
D7 = τD7

∫
d8ξ e−Φ

√
|det (P [G] + F)| Θ̄PD7

−
(
ΓαDα −

1

2
O
)

Θ (104)

The κ symmetry acts as Θ→ Θ+PD7
− κ. We can use this redundancy to set one of the components

of the bispinor to zero, e.g., θ1 = θ, θ2 = 0. The SUGRA flux dependence is hidden in Dα and O
which are operators appearing in the gravitino and dilatino variation respectively. The projector

PD7
− depends on F = B2 + F2.

It was noted in Marchesano, McGuirk, Shiu that in the presence of warping, the 5-form flux
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is sourced: F int
5 = ∗̂6d(∆eΦ). This 5-form flux couples to D7 fermions and affects the warping

dependence of the gaugino wavefunction and we found that

θ(xµ, xa) = h3/8λ(xµ)⊗ η(xa) (105)

where η is a covariantly constant spinor with respect to the unwarped metric. This is in contrast to

θ(xµ, xa) = h1/8λ(xµ)⊗η(xa) found in Acharya, Benini, Valandro where the 5-form coupling

is neglected. Moreover, the warping dependence is the same regardless of the worldvolume flux on

the D7-branes.

• Step 2: Perturbing the D7-brane action:

The gaugino bilinear terms come from the covariant derivative in the Dirac-like action, e.g., terms

of this form which depend on the 3-form flux:
∫
d8x
√
−det(gαβ + Bαβ)tr{ΘPD7

− G+
3 Θ} (106)

We perturb to linear order all the SUGRA fields appearing in the action including the metric, the

5-form, etc

• Step 3: Dimensionally reducing the action:
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The wavefunction is peaked in the IR (from step 1). The main contribution comes from τmin =

2 cosh−1(µ/ε), and we get

−τ7gsMε2/3τ 4
minS

∫

R3,1
d4x tr(λ2) (107)

• Step 4: Canonical Normalization:

The kinetic term of the gauginos do not come out canonically normalized. Rescaling the gaugino

kinetic term so that it becomes canonical, the bilinear calculated in step 3 gives a contribution to

the gaugino mass that goes parametrically as follows:

δm1/2 ∼ gsMε2/3τ 4
min gvis S (108)

• Step 5: Translating to 4D Gauge Theory:

Instead of microscopic quantities like the flux quanta and the deformation parameter of the coni-

fold, it is useful to express this gaugino mass in terms of field theory quantities.

At the bottom of the cascade, the hidden sector gauge group is simply SU(M), and so the ’t

Hooft coupling in the far IR is

λ = gsM (109)

Using the holographic dictionary for cascading gauge theories (Aharony, Buchel, Yarom), the

expansion parameter S in the gravity solution was found to be related to the vacuum energy of
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the dual 4D gauge theory (DeWolfe, Kachru, Mulligan):

ΛS ∼ S1/4Λε (110)

Finally, the messenger mass is determined by the distance from the tip:

m3/2
χ ≈ Λ3/2

ε

(
1 +

1

8
τ 2

min

)
(111)

Putting these together:

δm1/2 ∼ gvisλ
Λ4
S

Λ3
ε

((
mχ

λε

)3/2

− 1

)2

(112)

A priori, there are potential contributions from the 5-form flux or from the perturbed spin con-

nection. But a detailed analysis shows that these terms vanish.

The end result, to leading order, is:

δm1/2 ∼ gvisλ
Λ4
S

m3
χ

((
mχ

λε

)3/2

− 1

)2

(113)

This suggests identifying an effective F-term (the non-messenger dependence):

F =
√
λΛ2
S (114)

Therefore, we found after a long calculation that:
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– Unlike the weakly coupled messenger case where m1/2 ∼ F/M , the gaugino mass vanishes to

leading order in F , which seems generic in semi-direct gauge mediation (Seiberg, Volansky,

Wecht).

– All SUSY breaking components of the 3-form flux contribute to the gaugino mass. This is

in contrast to an earlier model independent study (Camara, Ibanez, Uranga) where only

the (0, 3) flux was found to contribute. This is because a Kahler metric was assumed in

their analysis. However, in the presence of a SUSY breaking source like an D3 brane, the

backreacted metric is not necessarily Kahler as our explicit solution shows. The non-Kahlerity

of the metric can contribute in the same order.

– A deceasing gaugino mass as mχ → Λε is reflective of the duality cascade. The effective ’t

Hooft coupling decreases with scale and so m1/2 becomes smaller.

Sfermion Masses

As for the visible sector matter, we assumed for simplicity that they live in the UV and hence

the sfermion masses follow from gaugino mediation (Kaplan, Kribs, Schmaltz; Chacko, Luty,

Nelson, Ponton). In a more complete model, the visible sector could be realized holographically on

intersecting D7-branes with worldvolume flux. The computation of these soft masses requires more
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sophisticated tools.

Visible Sector Matter

• Assuming that the visible sector matter lives in the UV (elementary), the other 

soft terms follow from gaugino mediation [Kaplan, Kribs, Schmaltz; Chacko, 

Luty, Nelson, Ponton].

• In a more complete model, the visible sector could be realized holographically 

on intersecting D7-branes with world-volume flux (composites).

D7s

warped region

D3s

Summary of this section

So, to summarize, holography provides a powerful tool to explore strong coupling extensions of the

Standard Model. This example is a proof of concept that such scenarios can be analyzed even though

conventional perturbative techniques break down.
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6.5 Warped Throats and the Standard Model

Now, one might wonder if holographical techniques can be applied to BSM scenarios where the visible

sector is the low energy limit of a strongly coupled gauge theory (i.e., technicolor-like). A natural

question is whether the singularity which support the chiral spectrum of the Standard Model discussed

earlier in Section 4 can arise at the tip of some warped throats. Unfortunately, the KS throat is too

simple to generate chiral physics in the infrared. On the gravity side, the geometry is smooth after

the deformation, while on the field theory side, the light degrees of freedom are simply the glueballs

of the confining theory. Hence the KS throat does not lead to the SM degrees of freedom by putting

D3-branes at the tip.

The simplest possibility is to consider throats which contain a singularity at the tip, e.g., a Z3

orbifold singularity. The first thing one might try is to construct the quotient of the deformed conifold

by a Z3 action with isolated fixed points. Unfortunately, the deformed conifold does not admit such

symmetries. For instance, we can change variables and describe the conifold as

xy − uv = z (115)

There is a Z3 symmetry: (x, u) → e2πi/3(x, u) and (y, v) → e−2πi/3(y, v), which unfortunately is

104



freely-acting8. Other possible Z3, such as x→ e2πi/3x, y → e−2πi/3y while leaving u, v invariant, have

a whole complex curve of fixed points9 so locally the singularity is C× C2/Z3. This singularity leads

to N = 2 worldvolume theories which are non-chiral.

Progress in understanding warped throats for other geometries, generalizing the conifold, as well as

their interpretation in terms of duality cascades and infrared confinement provides useful techniques to

implement these ideas. Skipping the details, it suffices for our purposes to consider a particular example.

Here, we follow the discussion of Cascales, Saad, Uranga. Consider the so called suspended pinch

point (SPP) singularity, which can be described as a hypersurface in C4 given by

xy − zw2 = 0 (116)

This geometry admits a complex deformation to the smooth geometry

xy − zw2 = εw (117)

which contains a finite size10 S3.

Moreover, the deformed geometry is invariant under a Z3 acting as

x→ αx y → αy z → αz w → α2w (118)
8The fixed point x = y = z = w = 0 does not solve the deformed conifold equation.
9defined by uv = z

10To see this, it is most convenient to change coordinates: ρ = x/w. The deformed SPP can now be written as ρy − zw = ε.
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with α = e2πi/3. Notice that the Z3 action leaves invariant the holomorphic 3-form Ω = dxdydz
zw of

the SPP, guaranteeing that the quotient is a new CY singularity. Furthermore, the Z3 action has the

origin as the unique fixed point, and hence there is a left-over Z3 singularity after the deformation.

On general grounds, it is expected that turning on M units of RR flux on the finite size 3-cycle

(as well as a suitable NSNS flux on its dual (non-compact) 3-cycle) leads to a warped throat. At its

bottom the throat is cutoff by the finite size 3-cycle, leaving behind a C3/Z3 singularity. A chiral

gauge theory is obtained by introducing a small set of D3-branes at the singularity. The latter are

probes, and do not modify the structure of the throat significantly.

In fact, one can embed the local D-brane model described in Section 4 within this throat. The

D7-branes can wrap the 4-cycle defined by w = 0 which pass through the D3-branes located at

x = y = z = w = 0.

To summarize, we have succeeded in finding a throat with a semi-realistic D-brane sector at its tip.

The warped geometry also admits a tractable holographic dual. It would be interesting to construct

an explicit metric11 for these types of warped throats since they allow us to study properties of the

strongly coupled field theory dual. For example, the KK spectrum in such warped throat background
11The SPP singularity arises as a particular case of a cone over the La,b,c families of Einstein-Sasaki metrics constructed in recent years. The warped deformed

versions of such metrics have not been worked out yet.
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tells us about the glueball masses of the dual field theory.
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7 Final Thoughts

I hope these lectures have given you some flavor of string phenomenology, with an emphasis on D-brane

models of particle physics. As you have seen, string theory has been a seed of many new ideas for

physics beyond the Standard Model. It has also given us a powerful tool to explore scenarios that are

otherwise not calculable with conventional perturbative techniques. The big question is whether any

of these BSM ideas, string theoretical or not, are realized in Nature. For that, we have to wait for the

LHC to find out . . .
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