Higgs physics and experimental results

Bruno Lenzi

New Trends in High Energy Physics and QCD School, Natal, Brazil

23/10/2014

How to extract the signal? How significant it is?

• Likelihood function (model of the data):

How to extract the signal? How significant it is?

Likelihood function (model of the data): •

$$\mathscr{L}(\boldsymbol{\mu},\boldsymbol{\theta}) = \prod_{events} f_s \psi_s(m_{\gamma\gamma};\boldsymbol{\theta}) + (1 - f_s) \psi_b(m_{\gamma\gamma};\boldsymbol{\theta})$$

- Nuisance parameters: all that you needed to add to describe your data •
 - Some are fully determined by the data, others are constrained by external information (ideally measurements) → systematics uncertainties
- $q_{\mu} = -2\log \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})} \qquad \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})} \qquad \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\mu, \hat{\theta}_{\mu})} \qquad \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu}$ • Profile likelihood ratio:

- Asymptotically $\rightarrow \chi^2$ with 1 degree of freedom
- "Easy" to incorporate systematic uncertainties

$H \rightarrow \gamma\gamma$: toy example

$$G(x,\bar{x},\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{\frac{-(x-\bar{x})^2}{2\sigma^2}}$$

- $N_s = N_s^{SM} \times \mu$; $N_s^{SM} = 560$, $\mu = 1$
- N_B = 100k
- $\psi_s = G(m_{\gamma\gamma}, m_H, \sigma_m)$; m_H = 125 GeV, $\sigma_m = 1.5$ GeV
- $\psi_b = \exp(-\xi \times m_{\gamma\gamma}) / \text{Norm}$
- Parameter of interest: µ
- Nuisance parameters: ξ , N_B
- Asimov dataset (single representative dataset of the model)

 $m_{\gamma\gamma}$ [GeV]

$H \rightarrow \gamma\gamma$: toy example, profile likelihood ratio

Profile likelihood ratio:
$$q_{\mu} = -2\log \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$$

 ${\boldsymbol{\mathscr{S}}}$ maximized with μ fixed

 $\boldsymbol{\mathscr{L}}$ maximized with $\boldsymbol{\mu}$ free

Profile likelihood ratio:
$$q_{\mu} = -2\log \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$$

\mathscr{L} maximized with μ fixed

 ${\boldsymbol{\mathscr{L}}}$ maximized with μ free

Asymptotic approximation:

$$q_0 = -2\log\frac{\mathscr{L}(0;\theta_{\mu=0})}{\mathscr{L}(\hat{\mu};\hat{\theta})} \to \left(\frac{\hat{\mu}}{\sigma}\right)^2 = Z^2$$

 5σ significance!

Profile likelihood ratio: $q_{\mu} = -2\log \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$ $\qquad \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$

Systematic uncertainties incorporated by adding parameters to \mathscr{L} , constrained by external information (in the form of pdfs). E.g.:

Profile likelihood ratio: $q_{\mu} = -2\log \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$ $\qquad \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$

Systematic uncertainties incorporated by adding parameters to \mathscr{L} , constrained by external information (in the form of pdfs). E.g.:

Profile likelihood ratio: $q_{\mu} = -2\log \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$ $\qquad \frac{\mathscr{L}(\mu, \hat{\theta}_{\mu})}{\mathscr{L}(\hat{\mu}, \hat{\theta})}$

Systematic uncertainties incorporated by adding parameters to \mathscr{L} , constrained by external information (in the form of pdfs).

Higgs mass measurement

- H → γγ: systematic uncertainties from energy scale
 - $e \rightarrow \gamma$ extrapolations, non-linearities
 - Huge effort to reduce by factor 2-3

Known to ~1% at discovery, ~0.3% now

- H → γγ: systematic uncertainties from energy scale
 - $e \rightarrow \gamma$ extrapolations, non-linearities
 - Huge effort to reduce by factor 2-3
- $H \rightarrow 4\ell$: dominated by statistical uncertainties
- Compatibility: 2.0σ (ATLAS), 1.6σ (CMS)
 - Shifts in opposite directions

The SM Higgs boson at the LHC

Run 214680, Event 271333760 17 Nov 2012 07:42:05 CET

$H \rightarrow WW^* \rightarrow \ell \nu \ell \nu$

$H \rightarrow WW^* \rightarrow \ell v$

3R ~ 200 fb @ 125.5 GeV

- Signature: opposite-sign reproves (e, μ) and range massing nansverse energy
 - Higgs is a scalar
 - Leptons emitted with small $\Delta \varphi$
 - Limited mass resolution from v's
 - Transverse mass as main discriminant:

$$m_T^2 = \left(E_T^{\ell\ell} + E_T^{\text{miss}} \right)^2 - \left| \vec{p_{T_{\ell\ell}}} + \vec{E_T^{\text{miss}}} \right|$$

- Large backgrounds: WW, W+jets, top, Z/γ*, di-bosons
 - Mostly data-driven
- Data split according to jet multiplicity
 - 0/1 jets: ggF signal, WW background
 - 2 or more jets: VBF signal, top background

$H \rightarrow WW^* \rightarrow \ell v \ell v$: analysis strategy

- Data split according to jet multiplicity
 - 0/1 jets:
 - ggF signal
 - WW / Z backgrounds
 - 2 or more jets
 - VBF signal
 - top background

$H \rightarrow WW^* \rightarrow \ell v \ell v$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	6.1	5.8	$1.08^{+0.22}_{-0.20}$
CMS	4.3	5.8	$0.72^{+0.20}_{-0.18}$

4.9 fb⁻¹ (7 TeV) + 19.4 fb⁻¹ (8 TeV) CMS 200 S/(S+B) weighted events / bin data - backgrounds $m_{\rm H} = 125 \text{ GeV}$ $H \rightarrow WW$ eμ 0/1-jet 150 🕅 bkg uncertainty 00 50 0 -50 200 250 100 150 50 m_{T} [GeV]

$H \rightarrow WW^* \rightarrow \ell v \ell v$: a look at the data

$H \rightarrow \tau \tau$

Run Number: 209109, Event Number: 86250372

Date: 2012-08-24 07:59:04 UTC

EXPERIMENT

→ Decay length: ~87 µm Tau decays and arecomstructions

$H \rightarrow \tau \tau$: a look at the data

- Low mass resolution:
 - Small separation from
 Z → τ τ
 - No precise Higgs mass determination
- Analysis optimised to m_H = 125 GeV
 - $m_{\tau\tau}$ is one of the inputs in the BDT discriminant against the background

$H \rightarrow \tau \tau$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	4.5	3.5	$1.42^{+0.44}_{-0.38}$
CMS	3.0	3.7	0.78 ± 0.27

ALL ALL A

$(W/Z) H \rightarrow b\bar{b}$

- Huge backgrounds from QCD
 - Exploit associated production with W/Z decaying to leptons and neutrinos
 - Provides trigger
 - Reduces QCD multi-jet background

(W/Z) H → bb

- Huge backgrounds from QCD
 - Exploit associated production with W/Z decaying to leptons and neutrinos
- 2 b-tagged jets (displaced vertices)

(CMS)	Ь	С	light [%]
Loose	85	32	10
Medíum	70	15	1
Tíght	50	6	0.1

(W/Z) H → bb

- Huge backgrounds from QCD
 - Exploit associated production with W/Z decaying to leptons and neutrinos
- 2 b-tagged jets (displaced vertices)
- m_{bb} resolution ~ 10%
 - ~30% improvement from multivariate regression techniques and inclusion of soft-muons (b → µ, b → c → µ)

(W/Z) H → bb

- Huge backgrounds from QCD
 - Exploit associated production with W/Z decaying to leptons and neutrinos
- 2 b-tagged jets (displaced vertices)
- m_{bb} resolution ~ 10%
- Split events in P_T(W/Z)
 - Boosted topologies, enhance sensitivity
- Challenge: control backgrounds
 - Di-boson, W/Z+jets (heavy flavour), top, multijets

• Discriminant: BDT, including m_{bb}, number of jets, b-tagging score...

(W/Z) $H \rightarrow b\bar{b}$: a look at the data

	Z_{obs}	Z_{exp}	μ
ATLAS	1.4	2.6	0.52 ± 0.4
CMS	2.1	2.1	1.0 ± 0.5

- Direct access to top Yukawa coupling (gluon-fusion is a loop process)
- Complex final states, determined by top-quark decays and Higgs decays
 - All jets: large BR but hard to disentangle from QCD multijets (H $\rightarrow \gamma\gamma$)
 - Fully leptonic tt: very clean but very low BR $(H \rightarrow bb)$
 - Lepton + jets: clean and relatively abundant (H \rightarrow bb, $\tau \tau$, WW, ZZ, $\gamma\gamma$)

ttH, $H \rightarrow \gamma \gamma$

- Standard H → γγ analysis requiring additional leptons and/or jets to enrich the sample in ttH production
 - Very low statistics
 - Leptonic and hadronic categories with ~80% ttH purity
 - Small contamination from tH, WH (leptonic), gluon-fusion (hadronic)

ttH, H → bb

- Final states with one or both W's decaying to leptons
 - Trigger and discrimination against QCD
- Very complex final states, multiple possibilities to combine jets to reconstruct Higgs or top decays
 - m_{bb} is not a powerful discriminant

$ttH, H \rightarrow bb$

• No single final state with sensitivity: "divide and conquer"

ttH combination

- ATLAS: 1.5σ observed (1.0σ expected)
- CMS: 3.5σ observed (1.2σ expected), 2.0σ above SM prediction
 - Large excesses in same-sign di-muon and γγ analyses

Rare decays: $H \rightarrow Z\gamma \rightarrow \ell \ell \gamma$, $H \rightarrow \mu \mu$

- Clean signatures
 - Leptons and low-E_T photon / opposite charged muons
- Low signal yields and large backgrounds, modeled by analytical functions
 - Z+γ (~80%) and Z+jet (~20%) / Drell-Yan (~95%)
- Limits @ 95% CL, m_{H} = 125.5 GeV: μ \lesssim 10 $\,$ / μ \lesssim 7

σ X BR ~ 2.3 fb (~5 fb)

@ 125.5 GeV