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Outline

This lecture is an attempt to cover the 
experimental challenges of jet physics at LHC 
!
How to go from detector hits to theory comparison? 
!
What are the new ideas for jet tools? 
!
Notes: 
1) jet algorithms⨁theory are not covered in this lectures 
2) nice lectures already given (overlap is expected) 

Grégory Soyez, Albert de Roeck, Bruno Lenzi, Rikkert Frederix, Marc Besançon 
3) some experimental aspects are not covered  
  (ex: efficiencies, trigger)
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Reminder

Reminder

TeV4LHC QCD WG - hep-ph/0610012
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Is this really what is happening?
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Epistemological Realism - Personal View

Truth is a place we can not go
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Epistemological Realism - Personal View

Truth is a place we can not go

But, we can take pictures of it 
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Epistemological Realism - Personal View

Truth is a place we can not go

And, we can paint how we think it is
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Epistemological Realism - Personal View

Truth is a place we can not go

Our job is to compare photographies with paintings

Both photographers and painters are doing a great job
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Jet evolution

proton proton

time

partons

hadronization

hadrons

decays

‘’stable’' particles
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+ Algorithms that combine nearest particles 
!

o Cambridge/Aachen algorithm: combine particles nearest each other 
!
o “kT” algorithm: preference for combining lower-momentum particle pairs 

first, then moving on to higher-momentum pairs 
!
o “anti-kt” algorithm collects particles around the hardest particle first. It 

guarantees “cone-like geometry” with well-defined borders around the 
highest-kT particles and it maintains the infrared safety and collinear safety 
of sequential recombination family 

!
+ These algorithms correspond to p=0, p=1 and p=-1. 
!
!

7

Jet Clustering
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Jet evolution

proton proton

time

partons

hadronization

hadrons

decays

‘’stable’' particles

“parton-level” jets  
partons used as inputs of the jet algorithm

“hadron-level” / “particle-level” jets or 
“stable” particles* used as inputs of the jet algorithm

*Neutrinos are excluded
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Experimental Challenge

- Only “stable’’ particles are detected (𝜏 >10-8 s)* 
- Prior knowledge of their interactions are needed

http://www.particleadventure.org/

*These include 𝝅, K, p, n, e, 𝝁, 𝛄 and KL0.  
Neutrinos are invisible
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Particle Interaction

R. Cavanaugh, HCPSS 2012
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Particle Interaction

R. Cavanaugh, HCPSS 2012

Nuclear Interaction Length 
Mean distance over which a 
hadron collides with a nuclei

𝛌 ~ 35 g cm-2 A1/3
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Particle Interaction

R. Cavanaugh, HCPSS 2012

Radiation length 
Mean distance over which the 
electron energy is reduced by a 
factor of 1/e due to radiation losses

Nuclear Interaction Length 
Mean distance over which a 
hadron collides with a nuclei

𝛌 ~ 35 g cm-2 A1/3
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Particle Interaction

R. Cavanaugh, HCPSS 2012

Radiation length 
Mean distance over which the 
electron energy is reduced by a 
factor of 1/e due to radiation losses

Nuclear Interaction Length 
Mean distance over which a 
hadron collides with a nuclei

𝛌 ~ 35 g cm-2 A1/3

Typical values for lead 

𝛌 ~ 17 cm 

X0 ~ 5.5 mm 
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Calorimeters

EM Calorimeter 
- high-Z material 
- total absorption of energy 
- 𝝈 = 1-10% / √ET

Hadronic Calorimeter 
- high density material 
- total absorption of energy 
- 𝝈 = 50-100% / √ET

a is the stochastic term 
b is the electronic noise 
c includes detector effects
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Calorimeters vs Tracker

R. Cavanaugh, HCPSS 2012
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
Muons

http://www.particleadventure.org/
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
Electrons / Photons

http://www.particleadventure.org/
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
Hadrons

http://www.particleadventure.org/
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
Converted photons

location of converted photons
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
V0s (𝜏 ~ 10-10 s)

V0s live long enough to reconstruct its vertex
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
π0→γγ
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
Neutral Hadrons

Primary Vertex

charged hadron

neutral hadron
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Particle Flow

Strategy to get most of detector is to match tracks with calorimeter clusters 
!
Track momentum is preferred over calorimeter energy 
!
Steps are ordered motivated by momentum resolution and particle identification purity 

!
Neutral Hadrons

Primary Vertex

charged hadron

neutral hadron
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Particle Flow
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Jets - Experimental Picture

Reconstructed “particles” are used as inputs of the jet algorithm - “detector-level” jets

“Detector-level” jets must be corrected/calibrated to compare with theory/models 
 Calibration of jets to “particle-level” is necessary 
!
Calibrated jets 
 - little dependence with detector effects (segmentation, response and resolution) 
 - good resolution and no angle biases 
 - good efficiency and low fake rate (Jet Identification) 
 - stable with beam luminosity (pile-up)  
 - computer time efficient 
!
Inputs 
 - calorimeter cells/towers/clusters 
 - tracks 
 - tracks+calorimeter (particle flow) 
!
!
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Jet Identification
At “detector-level”, the jet algorithm can reconstruct fake jet candidates: 
 - Hadronic tau decays (electrons and photons too) 
 - Cosmic ray 
 - Detector noise 
 - Pile-Up contribution
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Jet characteristics can be used to reduce these 
background rate to O(1%) 
 o Charged Fraction (from PV) 
 o EM Fraction
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Jet Composition

Jet at “particle level”

Jet at "detector level” 
(uncorrected)

LHCb Generator 

LHCb Simulation 
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Jet Composition

Tests of parton-shower⨁hadronization models are necessary

particle energy fraction
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Calibration Factorization

CMS

Atlas
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Calibration Factorization

CMS

Atlas
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Pile Up
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Pile Up

CMS 
78 collisions
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Pile up

Primary VertexPile Up Vertex
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Pile up Correction

In-time pile up activity depends on the number of Primary Vertices (PVs) 
Out-of-time pile up activity depends on the average number of PVs

larger R, larger PU
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Pile up Correction

Jet “independent” PU correction is also possible, e.g., jet area method. 
 ➡ adding “infinite” number of very soft 4-momentum vectors to cluster jets 
  jet area is defined (Aj) as the space occupied by the very soft particles 

 ➡ distribution of pTj/Aj is related to the PU activity

Number of PVs

NPVs=1
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Jet Energy Calibration - Simple view

Using simulation, we can match jets at “particle-level” and at “detector-level” 
!
!
!
!
!
!
Calibration factor is taken from the ratio pT(detector-level)/pT(particle-level) 
 + factor is applied to 4-momentum: angle biases needed to be checked 
!

If your detector is perfect => delta function
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Jet Energy Calibration - Samples

We do not want to be simulation dependent.  
!
Data-driven methods are developed using production of well calibrated object with a jet 

photon+jet or Z(→µ+µ-/e+e-)+jet 
!
!
!
!
!
!
!
!
!
Two jet production are also very useful for relative jet energy calibration
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Jet Energy Calibration - Dijet

Dijet sample 
➡ Both objects are the subject for calibration - this sample can be used to calibrate one 
region of the detector relative to another one. 
➡ Jet energy (pT) resolution can be measured 
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Jet Energy Calibration - V+jet
𝛾/Z+jet 
The reference object energy resolution is much better than the jet energy resolution. 
!
➡ At LO, the 𝛾/Z is balanced with the parton that originates the jet. 
!
➡ Missing transverse energy projection fraction (MPF) is used to include effects like:  
 - additional parton radiation 
 - underlying-event (UE) contribution 
 - out-of-cone contribution
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Jet Energy Calibration - V+jet
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Jet Energy Calibration - ISR/FSR

By vetoing additional jets in the sample (pTJet2>α pTγ),  
      the effect of initial and final parton radiation can be studied

leading jet

2nd jet

Photon
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Jet Energy Calibration - ISR/FSR

By vetoing additional jets in the sample (pTJet2>α pTγ),  
      the effect of initial and final parton radiation can be studied
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Residual Correction

Calibration derived in data may need to be corrected by residual effects  
 ➾ data-to-MC differences 
 ➾ different MC can provide different corrections
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Sanity check using W→jets

Good knowledge of the W boson mass can be used to test the jet energy calibration 
 ➾ W from top quark decay 
 ➾ sensitive to jets originating from quarks
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Jet Calibration - Flavour dependence

How can the calibration vary by changing the initial parton flavour (gluon)?

 Usually no extra correction is 
applied 
!

 Differences go to the systematic 
error of the calibration
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Jet Calibration for b-jets
 Using a data sample enriched in b-jets, one can check possible additional corrections
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Jet pT resolution

In dijet events, asymmetry distribution provides information about the jet energy resolution 
!

⦿ Extra activity affects the resolution  
 ⇒ resolution is evaluated with different veto thresholds of a third jet in the event 
⦿ Contribution from balance between “particle-jets” need to be considered
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Unfolding

To compare with theory, one needs to unfold measured distribution 
 ➡ correction for bin migration effects due to detector resolution 
 ➡ non-trivial mathematical operation

Figure from Mikko Voutilainen
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Measurement
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Measurement

Calibration 
Correction 
Unfolding
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Measurement

Calibration 
Correction 
Unfolding
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Measurement

24 orders of 
magnitude
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Measurement

How the jet reconstruction parameter (R) affects cross section?

⦿ pQCD calculation considers the ratio directly, rather than each distribution separately, making 
the calculated ratio effectively one perturbative order higher than the individual cross sections
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Missing Transverse Energy

Neutrinos and dark matter particles are identified with MET 

 ➡ Use of calibrated objects: muons, photons, electrons, jets 

 ➡ Pileup robust strategy 

 ➡ Resolution can be used to quantify MET consistency

“Fake” MET

“Real” MET
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b-tagging

⦿ b-hadrons can decay >~ 1 mm away from the PV. 
 - Need secondary vertex resolution of O(30 µm) 
!
⦿ c-hadrons have similar behaviour 

d0 ∼ θLB ∼

(

p⊥
p||

)

LB ∼

(

p⊥
p||

)

(cτB)γB ∼

(

mB

pB

)

(cτB)γB ∼ (cτB)
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Secondary Vertex
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b-tagging

⦿ Use of tracks is mandatory 
!
⦿ Several variables can be used for discrimination between b-jets and l-jets 
 Multivariate techniques are often used
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b-tagging

⦿ Use of tracks is mandatory 
!
⦿ Several variables can be used for discrimination between b-jets and l-jets 
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Quark-Gluon Tagging
⦿ Many measurements and searches can benefit from identifying jets parton origin 
 ➯ Models that predict production of many quarks vs multi-jet QCD production 
!
⦿ Colour factor ∝ radiation ∝ particle multiplicity 
 ➯ CA/CF = 9/4 
!
⦿ Other variables can be used: width, number of subjets, etc.

Number of Constituents
5 10 15 20 25 30 35 40

Ev
en

ts
 / 

(1
)

0

200

400

600

800

1000

1200

1400

1600

1800 Z+Jets
Data
Quark

Gluon
Unmatched+PU

| < 2η|
 < 100 GeV

T
80 < p

 = 8 TeVs at  -1CMS Preliminary, L = 18.3 fb 

Quark-Gluon Likelihood Discriminant
0 0.2 0.4 0.6 0.8 1

No
rm

al
ize

d 
To

 U
ni

ty

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
 < 50 GeV

T
40 < p

Quark Jets

Gluon Jets

 = 8 TeVsCMS Simulation Preliminary,  

| < 2η|



Murilo Rangel - IF/UFRJ 51

Quark-Gluon Tagging
⦿ Many measurements and searches can benefit from identifying jets parton origin 
 ➯ Models that predict production of many quarks vs multi-jet QCD production 
!
⦿ Colour factor ∝ radiation ∝ particle multiplicity 
 ➯ CA/CF = 9/4 
!
⦿ Other variables can be used: width, number of subjets, etc.



Murilo Rangel - IF/UFRJ 51

Quark-Gluon Tagging
⦿ Many measurements and searches can benefit from identifying jets parton origin 
 ➯ Models that predict production of many quarks vs multi-jet QCD production 
!
⦿ Colour factor ∝ radiation ∝ particle multiplicity 
 ➯ CA/CF = 9/4 
!
⦿ Other variables can be used: width, number of subjets, etc.



Murilo Rangel - IF/UFRJ 52

Tau-Jets
Tau-jet is the first use of jets to tag other particles than quarks/gluons 
It is massive enough to decay hadronically (M~1.8 GeV) 
Tau-jets are different than quark/gluon jets 
 ⦿ ”displaced” tracks: decay in beam pipe cτ=87 µm 
 ⦿ narrow jets with 1 or 3 tracks, possibly with neutrals
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Boosted High Mass Particles

⦿ At higher LHC energies, high mass particles (W,Z,H,top) move boosted regimes 
 This can be used to reduce the backgrounds for signals, e.g., 
   ⇒  WH measurements 
   ⇒  WW measurements and high-mass searches (p~MX/2) 
   ⇒ Boosted top quark decays 
⦿ Hadronic decays of W bosons may be boosted into a single (fat) jet 
⇒ Typical size of this jet is ΔR>2/γ, where γ is boost factor of W 
⇒ How can we separate these “W-jets” from light uds jets and b-jets? 

⦿ Several well-motivated handles to quantify substructure 
⇒ Main observable is the mass of the boosted (fat) jet 
⇒ Jet pruning techniques serve to reduce the mass of QCD light jets 
⇒ Mass drop observable contrasts fat jet mass with subjet masses 
⇒ Jet variables must be intended to be robust against pileup contributions
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Jet Pruning

Figure from JHEP09(2013)076

recluster using distance between particles 
and ignoring softer “proto-jets” if z<zcut 

z=min(pTi,pTj)/pTp

C/A jet (R>0.8)
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Jet Pruning
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Fat Jet Variables

Jet variables can be used to discriminate between W-jets from parton-jets: 
!
⦿ Mass drop: Undoing the last clustering step, the highest mass jet should 
have mass much lower than the W-jet.
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Fat Jet Variables

Jet variables can be used to discriminate between W-jets from parton-jets: 
!
⦿ N-subjettiness: For W→jets,𝝉2/𝝉1 is a good discriminant 
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Fat Jet Variables

Jet variables can be used to discriminate between W-jets from parton-jets: 
!
⦿ Charge: Neutral jets are background-like vs W-jets
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Fat Jet Variables

Jet variables can be used to discriminate between W-jets from parton-jets: 
!
⦿ Charge: Neutral jets are background-like vs W-jets
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W-Jet

Data studies show promising results.



Murilo Rangel - IF/UFRJ 59

W-Jet

Data studies show promising results.



Murilo Rangel - IF/UFRJ 60

Top Quark Tagging

Boosted top quarks can be produced in decays of ultra-high-mass resonances 
 ➯ one big fat jet can contain the top quark decays 
!
HEPTopTagger has been proposed to tag top quarks with hadronic W boson
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Top Quark Tagging

Figure from JHEP09(2013)076
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Top Quark Tagging

Boosted top quarks can be produced in decays of ultra-high-mass resonances 
 ➯ one big fat jet can contain the top quark decays 

Data studies show promising results.
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Future - High Pile Up

Jet substructure methods must be robust against pile up for the next run.
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Future - High Pile Up

Jet substructure methods must be robust against pile up for the next run.

So far, simulation studies are promising!

after grooming
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Summary

Jets are key ingredients of measurements and new 
physics searches 
!
Understanding jets improves impact of data 
!
Jet algorithms can be used to tag boosted objects


