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The well known example of gauge theory with spontaneously
broken symmetry is given by the Weinberg-Salam model.
The Weinberg-Salam model is the model of electro-weak
interaction on the basis of the group U(2) = SU(2)×U(1).
The electron and neutrino are described by the multiplets
with respect to the group SU(2). Electron and neutrino
with the left polarisation form a doublet



L = 1/2(1 + γ5)(ν, e) (1)

where ν and e are four component Dirac spinors. Right
handed electron is the singlet with respect to the SU(2)-
group

R = 1/2(1− γ5)e (2)

That means under the transformations belonging to SU(2)

L(x)→ L(x)− ig
τa

2
ξa(x)L(x); R(x)→ R(x) (3)



Under the transformations U(1)

L(x)→ L(x)−
ig1

2
η(x)L(x); R(x)→ −ig1η(x)R(x) (4)

The group U(2) is not simple, therefore the constants g
and g1 are independent. The special choice, given above
corresponds to the standard form of the electromagnetic
current.



The gauge invariant Lagrangian describing the interaction
of the fields R and L with the gauge fields corresponding
to the groups SU(2) and U(1) is

L = −
1

4
F aµνF

a
µν −

1

4
GµνGµν + iL̄γµ(∂µ + ig

τa

2
Aaµ +

ig

2
Bµ)L+

iR̄γµ(∂µ + ig1Bµ)R. (5)

The interaction contains the terms

ēγµ(1 + γ5)νeA
−
µ (6)

It contains charged lepton currents, but if one quantize
the fields Aaµ in the usual way, these fields will have zero
mass.



If the fields Aaµ were massive their propagators would be

Dab
µν = δab

gµν − kµkνm−2

k2 −m2
(7)

If k2 << m2, at low energies we have the interaction j+
µ jµ.

Introduction of the mass term for vector mesons breaks
the gauge invariance and makes the theory nonrenormali-
zable. Gauge invariance plays the essential role in the
proof of renormalizability. It provides the equivalence of
the unitary gauge (as Coulomb gauge in the Yang-Mills
theory) to some explicitely renormalizable gauge (for
example the Lorentz gauge ∂µAµ = 0).



The main achievement of Englert-Brout-Higgs was a disco-

very that the gauge invariance may be saved at the expense
of introducing the additional interaction with the scalar
field. They considered the Abelian theory. Generalization
to the non-Abelian case was done by Kibble, and the
renormalizability of the Weinberg-Salam model was proven
by G.t’Hooft.



For that purpose one may introduce the complex doublet

of scalar fields ϕ = (ϕ1, ϕ2) Gauge invariant Lagrangian,

which describes the interaction of scalar fields with gauge

fields looks as follows

L = |∂µϕ+ ig
τa

2
Aaµϕ+

ig1

2
Bµϕ|2 +

m2

2
ϕ+ϕ− λ2(ϕ+ϕ)2 (8)

Gauge invariant interaction between scalar fields and fermions
may be also added

L̃ = −G[(L̄ϕ)R+ R̄(ϕ+L)] (9)



The mass term for the scalar field enters with the wrong

sign. Hence the state ϕ = 0 is unstable, and to develop

perturbation theory in the vicinity of a stable extremum,

we should perform a shift

ϕ→ ϕ′ = (ϕ1, ϕ2 + κ); Imκ = 0 (10)

After such a shift the mass terms for the fields Aµ, Bµ, L,R
and one component of the scalar field ϕ appears.



After the shift the explicit form of the gauge transformation

of the fields ϕ changes. The field ϕ also becomes the

gauge field: it changes by arbitrary function

ϕ→ ϕ− igξa
τa

2
ϕ+

iµ

2
g(ξ1 + iξ2, ξ3) (11)

One can choose the functions ξ1, ξ2, ξ3 in such a way to
nulify the component ϕ1 and imaginary part of ϕ2.



In the following we shall consider in details the non-Abelian

case, corresponding to the SU(2) gauge field interacting

with the scalar doublet. Let us start with the gauge invariant

Lagrangian

L = −
1

4
F aµνF

a
µν+(Dµϕ)+Dµϕ− [−µ2ϕ+ϕ+λ(ϕ+ϕ)2] (12)

As we mentioned before this Lagrangian is unstable and to
develop the perturbation theory around the stable minimum
one should shift the field ϕ

ϕ→ ϕ′ = (ϕ1, ϕ2 + κ); Imκ = 0 (13)



After this shift the theory obviously remains gauge invariant,
but the field ϕ′ becomes a gauge field, that means under
the gauge transformation it changes by arbitrary three
component function.



We can choose this function in such a way, that the first

component of ϕ′ disappears, and the second component

becomes purely real. In the following we denote ϕ′2 =

σ; Imσ = 0. In this gauge the shifted Lagrangian (62)

looks as follows

L = −
1

4
F aµνF

a
µν +

m2
1

2
AaµA

a
µ +

1

2
∂µσ∂µσ −

1

2
m2

2σ
2 +

m1g

2
σAaµA

a
µ +

g2

8
σ2AaµA

a
µ +

gm2
2

4m1
σ3 −

g2m2
2

32m2
1
σ4

m1 =
µg√

2
; m2 = 2λµ. (14)



We can define the canonical momenta P ak , Pσ as usual

P ak =
δL

δȦak
= F a0k; Pσ =

δL

δσ̇
τ = ∂0σ (15)

The variable A0 is not dynamical. Varying the Lagrangian
(14) with respect to A0 we get a constraint

(m1 +
gσ

2
)2Aa0 = (DkF0k)a = (DkPk)a (16)

This equation does not contain the derivatives with respect
to time, and therefore it is not a dynamical equation, but
constraint.



The solution of the constraint may be substituted to the
Lagrangian (14),removing the degeneracy of this Lagrangian.
The constraint (16) allows to express the field A0 in terms
of other canonical variables. In this way we obtain the
nondegenerate Lagrangian depending on the variables
Aak, P

a
k , σ, Pσ. To study the spectrum we shall look at the

free Hamiltonian H0

H0 =
1

2
P2
k −

1

2m2
1

(∂kPk)2 +
1

4
F aikF

a
ik +

m2
1

2
AakA

a
k +

1

2
P2
σ

+
1

2
∂kσ∂kσ +

m2
2

2
σ2. i, k = 1,2,3. (17)



The asymptotic states are described by the harmonic osci-
llator variables. That means this Hamiltonian should be
expressed in terms of holomorfic coordinates abi , (a

b
i)
∗ and

aσ, a∗σ It can be done with the help of representation

Abl(x) = (2π)−3/2
3∑
i=1

∫
(exp{ikx}abi(k)eil(k) +

exp{−ikx}(abi)
∗(k)eil(k))

d3k√
2ω

P bl (x) = (2π)−3/2
3∑
i=1

∫
(exp{ikx}abi(k)ẽil(k)−

exp{−ikx}(abi)
∗(k)ẽil(k))

√
ωd3k

i
√

2
(18)



Here el are the polarization vectors: e1,2
l = ẽ

1,2
l , perpendi-

cular to k, e3
l = klω1

|k|m1
, ẽ3

l = klm1
|k|ω1

, ω1 =
√
k2 +m2

1. For

σ(x) and Pσ(x) one can write the standard decomposition.

σ(x) = (2π)−3/2
∫

(exp{ikx}aσ + exp{−ikx}a∗σ)
d3k
√

2ω2

Pσ(x) = (2π)−3/2
∫

(exp{ikx}aσ − exp{−ikx}a∗σ)
√
ω2

2
d3k

ω2 =
√
k2 +m2

2(19)



Substitution of these representations to the eq.(17) gives
the following expression for the free Hamiltonian

∫
d3xH0(x) =

∫
d3k[Σ3

i=1(abi)
∗(k)abi(k)ω1 + a∗σ(k)aσ(k)ω2] (20)



It follows from the eq.(20) that the spectrum of the free

Hamiltonian is the sum of harmonic oscillator Hamiltonians

and it describes three polarisations of the vector field with

the mass m1 and one scalar meson with the mass m2. The

scattering matrix may be written in the form

S((abi)
∗, abi , a

∗
σ, aσ) =

∫
exp{i

∫
L̃(x)}

∏
x
dAi(x)dσ(x) (21)

where L̃ is obtained by substituting the expression for A0
which follows from the constraint to the Lagrangian (14).



The boundary conditions are the following: for t→ +∞, Aal →
(Aal )out and σ → σout, for t → −∞, Aal → (Aal )in and σ →
σin. In the initial state the negative frequencies of A and
σ are fixed; in the final state the positive frequencies of A
and σ are fixed.

The problem of quantization is solved, however the expression
for the scattering matrix is not convenient. First of all
manifest Lorentz invariance is lost. The effective Lagrangian
L̃ is known only as a perturbation series.



To avoid these problems let us reintroduce the integration
over Aa0. Then the expression for the scattering matrix will
look as follows:

S =
∫

exp{i
∫
L(x)dx}

∏
x

(m1 +
gσ

2
)3dAaµdσ (22)



Indeed, the integral over Aa0 is equal to

∫
exp{i

∫
dx1/2(m1 +

gσ

2
)2(Aa0A

a
0)−Aa0(DkF0k)a}dAa0 (23)

This integral is Gaussian and may be calculated explicitly

exp{−i
∫
dx(DkF0k)a(m1 +

gσ

2
)−2(DkF0k)a}

∏
x

(m1 +
gσ

2
)−3

(24)



One sees that the integration over Aa0 leads to replacement
of Aa0 in the equation which determines L by the solution
of the constraint equation, that is L → L̃, and the factor∏
x(m1 + gσ

2 )3 is compensated by the determinant.



The free Green function of the vector field is determined

by the path integral

Z(Jµ) =
∫

exp{i
∫
dx[−

1

4
F aµνF

a
µν+

m2
1

2
AaµA

a
µ+JaµA

a
µ]}

∏
x
dAaµ(x)dσ(x)

(25)



This function looks as follows

Dab
µν(x− y) =

1

(2π)4

∫
exp{ik(x− y)}(gµν −

kµkν

m2
1

)
1

k2 −m2
1 + iε

dk (26)

Its Fourie transform does not decrease, when k →∞. This
leads to the nonrenormalizable divergencies of separate
terms of perturbation theory. On the other hand in this
gauge there are no unphisical excitations. All the particles
present in the Lagrangian have positive energy and may
be observed. For that reason this gauge is called a unitary
gauge.



From the point of view of real calculations the renormalizabi-

lity is the very important property of a theory. Using the
gauge invariance of the shifted Lagrangian (62)we may
pass from the unitary, but nonrenormalizable gauge to
some manifestly renormalizable gauge, for example to the
Lorentz gauge ∂µAµ = 0. Of course in this gauge some
unphysical excitations are present, but as the renormalizable
theory was obtained by the identical transformation of the
unitary scattering matrix, these excitations decouple.



Let us note that in the exponent for the scattering matrix

(22)is present the Lagrangian, which is obtained from the

gauge invariant Lagrangian (62)by imposing the unitary

gauge condition. It is convenient to introduce the variables

Bi, σ

ϕ1 =
iB1 +B2√

2
; ϕ2 = µ+

σ − iB3√
2

(27)



In terms of the fields Bi, σ the gauge transformations have
a form

δσ = −
g

2
(Baξa); δBa = −m1ξ

a −
g

2
εabcBbξc −

g

2
σξa (28)

The scattering matrix may be written as follows

S =
∫

exp{i
∫
L(Aaµ, Ba, σ)dx}

∏
x
δ(Ba)(m1 +

g

2
σ)3dAaµdB

adσ

(29)
where L is a gauge invariant Lagrangian.



Note that the factor (m1 + gσ(x)
2 )−3 = ∆−1(B)B=0 may

be written as follows

∆−1(B)B=0 =
∫
δ(BΩ)dΩB=0 (30)

where integration goes over invariant measure on the group.

Indeed, at least in the perturbation theory

∆−1(B)B=0 =
∫
δ(m1ξ

a +
gσ(x)ξa(x)

2
)
∏
x
dξa(x) (31)

The factor ∆(B) is obviously gauge invariant.



Let us multiply the scattering matrix (29) by "1"

1 = ∆L(A)
∫
δ(∂µA

Ω
µ )dΩ (32)

and change the variables AΩ
µ = A′µ, B

Ω = B′, σΩ = σ′.

Taking into account the equation (31), and the gauge

invariance of the factor ∆(B) we get

S =
∫

exp{i
∫
L(x)dx}

∏
x

∆(B)δ(B′Ω)δ(∂µA
′
µ)∆L(A′µ)dA′dB′dσ′dΩ

=
∫

exp{i
∫
L(Aµ, B, σ)dx}

∏
x
δ(∂µAµ)∆L(A)dAdBdσ(33)



Now the free Green function of the field Aaµ is given by

the integral

Z(Jµ) =
∫

exp{i
∫

[−
1

4
(∂µA

a
ν − ∂νAaµ)(∂µA

a
ν − ∂νAaµ) +

m2
1

2
AaµA

a
µ + JaµA

a
µ]dx}

∏
x
δ(∂µA

a
µ)dAaµ(34)

It looks as follows

Dab
µν(x) =

δab

(2π)4

∫
exp{ikx}(gµν −

kµkν

k2
)

1

k2 −m2
1 + iε

dk

(35)
This function decreases at k →∞



The propagators of the fields Ba and σ have the standard

form

Dab
B =

δab

k2 + iε
; Dσ =

1

k2 −m2
2 + iε

(36)

Finally we should determine the factor ∆L(A). At the

surface ∂µAµ = 0 it is the usual Faddeev-Popov determinant

∆−1
L (A) =

∫
δ(∂2ξa + εacbAcµ∂µξ

b)
∏
x
dξa(x) =∫

exp{i
∫

[∂µc̄
a(x)Dµc

a(x)]dx}
∏
x
dc̄(x)dc(x) (37)

The theory is obviously renormalizable.



In this gauge many unphysical excitations are present.
They are: zero components of the field Aaµ, Goldstone
bosons Ba, Faddeev-Popov ghosts c̄, c. However as our
transformation from unitary gauge to the Lorentz gauge
was identical, the scattering matrix is unitary in the subspace
which includes only physical excitations. It can be demonstra-
ted explicitly in the Lorentz gauge, by using the BRST
quantization technique.



One can also pass to some other renormalizable gauge,for
example to so called α gauge, when to the gauge invariant
Lagrangian the term 1

2α(∂µAµ)2 and the Faddeev-Popov
ghosts are added. These gauges however are not convenient
because they lead to the mixture of the fields Aaµ and Ba.
In these gauges the quadratic terms ∂µBaAaµ are present.
More convenient are the gauges proposed by G.t’Hooft.



Let us consider the t’Hooft’s proposal in more detailes.

We introduce the functional ∆α by the following equation

∆α

∫
δ(∂µA

Ω
µ + αm1B

Ω − f(x))dΩ = 1 (38)

In this equation f(x) is arbitrary function and the integration
measure is invariant with respect to the group Ω.That
means that the functional ∆α(Aaµ, B

a, σ) is gauge invariant:
∆α(AΩ

µ , B
Ω, σΩ) = ∆α(Aµ, B, σ). Let us multiply the functional

describing the scattering matrix in the unitary gauge by"1".



Then we get

S =
∫

exp{i
∫
L(x)dx}δ(B)∆(B)∆α(Aµ, B, σ)δ(∂µA

Ω
µ +

αm1B
Ω − f(x))dΩdAµdBdσ.(39)

In this equation we change the variables with the help of
gauge transformation: AΩ

µ , B
Ω, σΩ→ Aµ, B, σ, and integrate

over Ω.



By the same reasonings as before we get for the scattering

matrix the following representation

S =
∫

exp{i
∫
L(x)dx}∆α(Aµ, B, σ)δ(∂µA

a
µ +

αm1B
a − fa(x))

∏
x
dAµ(x)dB(x)dσ(x) (40)



By construction the scattering matrix does not depend on

the arbitrary function fa(x). Therefore we can multiply it

by the factor
∫

exp{∫ dx(fa(x))2

2α }∏x dfa(x). Integrating the

resulting expression over fa(x) we get the final expression

for the scattering matrix in the t’Hooft gauge

S =
∫

exp{i
∫

[L(x) +
1

2α
(∂µA

a
µ

+αm1B
a)2]dx}∆α(Aµ, B, σ)

∏
x
dAµ(x)dB(x)dσ(x) (41)



The gauge fixing term also produces mixing of the fields
Aaµ and Ba. The gauge is chosen in such a way that these
terms exactly compensate the mixing terms present in the
Lagrangian.

It remains only to determine the explicit form of the factor
∆α(Aµ, B, σ). This factor was defined by the eq.(38)

∆α

∫
δ(∂µA

Ω
µ + αm1B

Ω − f(x))dΩ = 1 (42)

To determine the factor ∆α(Aµ, B, σ) we should find the
root of the argument of δ-function. Obviously Ω = 1, (ξ =
0) nullifies the argument of δ-function. It is easy to see
that in the framework of perturbation theory it is the only
root.



Hence we may perform the integration with the result

∆α = det(δac(∂2 − αm2
1)− g∂µεabcAbµ −

αgm1

2
εabcBb − δac

αm1

2
σ) =∫

exp{i
∫
c̄a(x)F ac(Aµ, B, σ)cc(x)dx}

∏
x
dc̄(x)dc(x) (43)



In the previous discussion we completely ignored the necessity
of existence of the ultraviolet regularization preserving
the symmetry of the theory. We were dealing with the
divergent integrals as if they were convergent. It may
lead to some problems. Usually people working with the
divergent integrals assume the existence of the dimensional
regularization preserving the symmetry of the theory.
Sometimes however the dimensional regularization does
not work. Example is given by the supersymmetric theories
to which the dimensional regularization is not applicable.



Another important example which are closer to our present

topic is given by the theories, including the matrix γ5. In

the framework of dimensional regularization a consistent

definition of γ5 matrix is impossible. It is exactly the case

for the Weinberg-Salam model of electroweak interactions.

The simplest way out in this situation is to use the regularization

with higher derivatives (A.A.S). For the Yang-Mills theory

one introduces the following regularized Lagrangian

LYM → LΛ
YM = −

1

4
[F aµνF

a
µν +

1

Λ4
D2F aµνD

2F aµν] (44)



The new terms, appearing in the Lagrangian (44), force
the free propagator to decrease faster than original one

Dab
µν = δab(gµν −

kµkν

k2
)

1

k2 + Λ−4k6
−

αkµkν

k4f2(−k2)
) (45)

In the Lorentz gauge the propagator for large k decreases
as k−6. Otherwise we choose the function f accordingly.
However to preserve the symmetry we are forced to introduce
not the ordinary derivatives, but the covariant ones.



Calculating the divergency index of the arbitrary diagram

we have

ω ≤ 6− 2n2 − n3 − 2n4 − 3n5 − 4n6 − 5n7 − 6n8 (46)

one sees that the divergent may be only the one loop
diagrams. As our regularization preserved the gauge invariance
it follows that the anomalies may arise only in one loop
diagrams.



However a general receipt for the one loop diagrams is

absent, and in some cases (including Weinberg-Salam model

for leptons) one can prove that it is impossible to regularize

in the invariant way the one loop diagrams. The well

known example is given by the triangle one loop diagram

in the U(1) chiral theory,described by the Lagrangian

L = −
1

4
(∂νAµ − ∂µAν)2 + iψ̄γµ(∂µ − igAµγ5)ψ (47)



This Lagrangian is gauge invariant and the divergency of

the one loop diagram with three external vector line must

be equal to zero. However the explicit calculations give

i(p+ q)αΓµνα(p, q) = −
g3

6π2
εµναβpαqβ (48)



The most general expression for renormalized three leg

vertex function is

Γ̃µνα = Γµνα(p, q) + c1εµναβp
β + c2εµναβq

β (49)

where Γµνα(p, q) is the symmetric vertex function, which
satisfies the equation (48). Γ̃µνα also should be the symmetric
function of the arguments (µ, p), (ν, q), (α,−(p+q)). Hence
we conclude that c1 = c2 = 0. Anomaly cannot be eliminated
by the renormalization freedom.



However, as one can see from the expression (48) for
the anomalous divergency of the vertex function,it is the
function of g. Therefore if we had the similar interaction
of the particles with the opposite charge, the anomalies
would compensate each other. It is the case for the Weinberg-
Salam model. The anomaly which are due to electron and
electron neutrino are compensated by the corresponding
anomaly, produced by u and d quarks.



But we have also the anomaly produced by the muon
and muonic neutrino. At that time only three quarks were
introduced. For the anomaly compensation the total charge
of leptons (−2) should be equal to the total charge of
quarks and should have the opposite charge (2/3 × 3 =
2). In this way the charmed quark was predicted. This
prediction was confirmed experimentally. At the present
time we know two more leptons and two more quarks.
They also lead to the compensation of anomalies and
therefore to renormalizability of Weinberg-Salam model.



All these considerations with nonessential changes are
applicable also to the electro-weak models in which the
neutrino have nonzero mass. Therefore spontaneous breaking
of symmetry allows to describe the electro-weak interactions
of leptons and hadrons in the framework of consistent
renormalizable model. For QCD section of the Standard
Model the situation is much worse. Although we have
no experimental facts contradicting the Standard Model,
consistent analytic explanation of color confinement is still
absent.



A problem of unambiguos quantization of nonabelian gauge
theories beyond perturbation theory remains unsolved. Even in
classical theory the equation

DµFµν = 0 (50)

does not determine the Cauchi problem. Gauge invariance results
in existence of many solutions of this equation. To define the
classical Cauchi problem and subsequently to quantize the model
one imposes a gauge condition, e.g. Coulomb gauge ∂iAi = 0.



Differential gauge conditions: L(Aµ, ϕ) = 0→ Gribov ambiguity.

Algebraic gauge conditions: L̃(Aµ, ϕ) = 0 → absence of the manifest
Lorentz invariance and other problems.



Coulomb gauge

∂iAi = 0

A′i = (AΩ)i

4αa + igεabc∂i(A
b
iα
c) = 0 (51)

This equation has nontrivial solutions fastly decreasing at spatial
infinity→Gribov ambiguity.

In perturbation theory the only solution is α = 0.



A remedy: new (equivalent) formulation of the Yang-Mills theory using
more ghost fields.
Let us consider the classical (SU(2))Lagrangian

L̃ = −
1

4
F aµνF

a
µν + (Dµϕ)∗(Dµϕ)− (Dµχ)∗(Dµχ)

+i[(Dµb)
∗(Dµe)− (Dµe)

∗(Dµb)] (52)

The scalar fields (ϕ, χ are commuting, e, b are anticommuting) are
parametrized by the Hermitean components

Φ =

(
iΦ1 + Φ2√

2
,
Φ0 − iΦ3√

2

)
(53)



Integrating over the fields ϕ, χ, b, e with vacuum boundary conditions
one gets∫

exp{i
∫
L̃dx}dµ̃ =

∫
exp{i

∫
Ldx}(detD2)2(detD2)−2dµ (54)

Here the measure dµ includes the gauge fixing factor and Faddeev-
Popov ghosts and the measure dµ̃ includes also differentials of the
fields ϕ, χ, b, e. The integral reduces to the usual path integral for
the Yang-Mills scattering matrix. The lagrangian L̃ gives for the
gauge invariant correlators the same result as the standard Yang-Mills
Lagrangian:

L = −
1

4
F aµνF

a
µν (55)



Now we consider a different lagrangian, which may be obtained from
L̃ by the shift

ϕ→ ϕ− g−1m̂; χ→ χ+ g−1αm̂ (56)

The constant field m̂ has a form:

m̂ = (0,m) (57)

For α = 1 the new Lagrangian looks as follows

L = −
1

4
F aµνF

a
µν + (Dµϕ)∗(Dµϕ)− (Dµχ)∗(Dµχ)

−g−1[(Dµϕ)∗+ (Dµχ)∗](Dµm̂)− g−1(Dµm̂)∗[Dµϕ+Dµχ]

+i[(Dµb)
∗(Dµe)− (Dµe)

∗(Dµb)] (58)

Note that because of the negative sign of the χ kinetic term this field
posesses negative energy.This is crucial to insure the cancellation of
the terms quadratic in m in the shifted Lagrangian and provide the
zero mass for the Yang-Mills field.



Higgs-Kibble model.

The model we consider in many respects reminds the Higgs model.
Instead of one scalar fields we have two scalar fields with different
signs of energy and two more anticommuting scalar fields. The presence
of two commuting scalar fields with different signs of energy allows to
avoid the mass generation for the vector field. As in the Higgs-Kibble
model these scalar fields become gauge fields, that is by the gauge
transformation they are shifted by arbitrary function.

In the Higgs-Kibble model one starts with the Lagrangian

L = LYM + (Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2 (59)

After the shift ϕ = ϕ′+ µ̂, µ̂ = {0, µ} ϕ′a, a = 1,2,3 becomes a
gauge field:ϕ′a → ϕ′a + µηa(x) + . . .. Unitary gauge ϕ′a = 0 is algebraic,
but Lorentz invariant. However this gauge is nonrenormalizable.



Is it possible to invent Lorentz invariant algebraic gauge for the Yang-
Mills theory in which the theory is renormalizable?

The Lagrangian (58) may be obtained from the gauge invariant
Lagrangian, describing the interaction of the complex scalar doublets
with the Yang-Mills field by the shift

ϕ→ ϕ− g−1m̂; χ→ χ+ g−1αm̂ (60)

Hence the Lagrangian (58) is invariant with respect
to the"shifted"gauge transformations.

In particular the transformation of the field ϕa± = ϕa±χa√
2

is

δϕa± = m1±α
2 ηa + g

2ε
abcϕb±η

c + g
2ϕ

0
±η

a



For α = 1 this Lagrangian is also invariant with respect to the
supersymmetry transformations

δϕ−α(x) = 2iεbα(x)

δeα(x) = εϕ+
α (x)

δb(x) = 0 (61)

where ε is a constant anticommuting parameter.

This invariance plays a crucial role in the proof of the equivalence of
the model described by the Lagrangian (52) to the standard Yang-
Mills theory. It provides the unitarity of the scattering matrix in the
subspace which includes only three dimensionally transversal components
of the Yang-Mils field.



The field ϕa− is shifted under the gauge transformation by an arbitrary
function m1+α

2 ηa. It allows to impose Lorentz invariant algebraic
gauge condition ϕa− = 0. The resulting theory is gauge invariant for
any α and for α 6= 1 has no infrared divergencies. However for α 6= 1

the theory also is not unitary. It may seem strange, as usually the
gauge invariance is the sufficient condition of unitarity, as it allows
the free transition from the unitary to renormalizable gauge. In our
case there is no unitary gauge. Even in the gauge ϕa− = 0 there are
unphysical excitations.



The spectrum:
Ghost exitations: ϕ±, b, e, longitudinal and temporal components of
Aaµ
Physical exitations: three dimensionally transversal components of the
Yang-Mills field.

The supersymmetry of the effective action generates a conserved
nilpotent charge Q. Physical states are separated by the condition

Q|ψ >ph= 0 (62)

the states separated by this condition describe only three dimensionally
transversal components of the Yang-Mills field.

The ghost exitations decouple.



Renormalization

The field h(ϕ0
−) enters interaction only with derivative ∂µh. Hence the

divergency index of a diagram with n external h(ϕ0
−) lines decreases

by n.

The index of divergency of an arbitrary diagram is

n = 4− 2Lϕ0
+
− 2Lϕ0

+
− LA − Le − Lb − Lh (63)

The theory is manifestly renormalizable.



An alternative formulation of the Higgs-Kibble model.

L = −
1

4
F aµνF

a
µν + (Dµϕ

+)∗(Dµϕ−) + (Dµϕ
−)∗(Dµϕ+)

+(Dµϕ)∗(Dµϕ)− λ2(ϕ∗ϕ− µ2)2

−[(Dµb)
∗(Dµe) + (Dµe)

∗(Dµb)] (64)

Here the field ϕ is the complex doublet describing the Higgs meson,
and the fields ϕ± are new auxiliary fields. The fields b, e have a similar
structure, but correspond to the anticommuting fields. The shift

ϕ−(x)→ ϕ−(x)− m̂; ϕ(x)→ ϕ(x)− µ̂ (65)

where m̂ and µ̂ are the coordinate-independent condensates

m̂ = (0,m/g); µ̂ = (0, µ/g) (66)

generates the mass term for the vector field.



In the same way as before one can show that the theory described by
this Lagrangian is renormalizable and unitary in the space, including
only three polarizations of the vector field and the scalar Higgs meson.

Therefore the extension of the spectrum of non-Abelian gauge theories,
supplemented by the corresponding extension of their symmetry
(supersymmetry), makes possible to perform quantization of these
theories both in the framework of perturbation theory and beyond it.
It allows to study QCD and electroweak models beyond perturbation
theory.
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