Measurement of the top-Higgs Yukawa coupling in ttH(bb) events at the LHC in the ATLAS experiment

New trends in High Energy Physics 06/11/2014

Natal

Eloi Le Quilleuc *Cea – Saclay*

Le Quilleuc Eloi

Introduction

- Interest of measurement ? Higgs-top Yukawa coupling in SM
- Large Hadron Collider (LHC), ATLAS detector
- $t\bar{t}H$ decay channel

Resolved ttH Analysis at 8 TeV

- Event topology / background
- Present results at 8 TeV / limitations

ttH(bb) boosted topology at 13 TeV

- Definition of $t\bar{t}H$ in boosted topology
- Ongoing studies

INTRODUCTION

Motivation

- In 2012 a new Higgs-like boson was discovered in both ATLAS and CMS experiments at a mass of 126 GeV.
- The Higgs properties have to be measured, in particular its couplings to fermions (Yukawa terms) and gauge bosons
- One thing to remember : in SM, the Higgs coupling to fermions is proportional to their mass and the Higgs coupling to gauge bosons is proportional to their mass squared
- Top-Higgs coupling is the largest Yukawa coupling in SM because of the large top mass (= 174 GeV). Its precise measurement will allow us to constrain the Higgs mechanism in SM and BSM.

Yukawa terms in the SM

- In SM, a fermion field ψ_f acquires its mass from its interaction with a Higgs field ϕ

L= - $\lambda_{_f}\overline{\psi}_{_f}\, \phi \, \psi_{_f}$

• When ϕ is "shifted " by spontaneous symmetry breaking, L splits into two pieces

where v is the vacuum expectation value, and h is the physical Higgs field

$$ightarrow \lambda_{\scriptscriptstyle f} = m_{\scriptscriptstyle f}^{\prime} / v$$

 $v=2M_{\scriptscriptstyle W}/g_{\scriptscriptstyle w}$ = 246 GeV , $M_{\scriptscriptstyle W}=W$ mass, $g_{\scriptscriptstyle w}$ = weak coupling cst

 $m_f = \text{fermion mass}$

 Yukawa couplings to fermions are proportional to their mass, and non proportionality could give hints to BSM couplings

LHC

- Hadron (pp / heavy ions) collider located at Cern, in order to study Standard Model (SM) in a new kinematical domain, to search for new dynamics (i.e new type of physics)
- Main parts :
 - 27 km circumference ring
 - Superconducting magnets
 - 4 main experiments

One of the main tasks of both ATLAS and CMS experiments is to understand the electroweak symmetry breaking. They are perfectly suited to measure the top-Higgs Yukawa coupling in pp collisions.

- $7~{\rm TeV}$ and $8~{\rm TeV}$ in 2011 and 2012 respectively
- 13 TeV expected in 2015

 \sqrt{S}

$t\bar{t}$ decay

- Short top quark lifetime, resp. $\tau_t \sim 10^{-25} \text{ s}$, $t \rightarrow Wb$ (W lifetime ~ 10⁻²³ s)
- 2 distinct W decays:
 - leptonically (30 %) decaying W
 - hadronically (70%) decaying W

Top Pair Branching Fractions

- **alljet** channel : contaminated by multijet background
- dilepton channel : low statistics
- → Look for a **lepton+jet** $t\bar{t}$ channel:

Compromise between clean signature and good statistics (30 %)

H decay

- Short Higgs boson lifetime, $\tau_{H} \sim 10^{-23} \ {\rm s}$
- Possibility to exploit several Higgs decay modes

- $H \rightarrow b\overline{b}$: largest branching ratio (~ 57 %) for m_{H} = 126 GeV
- Combine lepton+jet $t\bar{t}$ decay and $H(b\bar{b}),$ the associated branching ratio $\sim 17~\%$

 $\eta = -\ln\left|\tan\left(\frac{\theta}{2}\right)\right|$

Ĥ

ATLAS detector

4 concentric layers :

- Inner detector (reconstructs the interaction points, secondary vertices, and measure the momentum of charged particles)
- Electromagnetic Calorimeter (measures the energy of electromagnetic showers)
- Hadronic Calorimeter (measures the energy of hadronic showers)
- **Muon Spectrometer** (measures the momentum of muons)

Le Quilleuc Eloi

 \mathcal{X}

RESOLVED $t\overline{t}H(b\overline{b})$ ANALYSIS AT 8 TEV

Decay summary

Decay

- 4 b quarks (Higgs and top quarks)
- 2 light quarks (hadronically decaying W)
- Charged lepton (e, μ) + MET (leptonically W boson)
- Resolved analysis : the b and light quark candidates are reconstructed within a jet anti-Kt R = 0.4
- Huge background from tt+jets, affected by large systematic uncertainties, both theoretical and experimental, $\sigma(t\bar{t})/\sigma(t\bar{t}H)$ ~2000(1500) for 7 TeV(14 TeV)

 $t\overline{t}b\overline{b}$ background : same signature than $t\overline{t}H$ events

Le Quilleuc Eloi

Event topologies

- The sample is divided in 9 sub-samples according to the jet multiplicity and the b-jet multiplicity. They are analysed separately and combined to maximise the sensitivity
- Use of Neural Network multivariate method : reconstruct the top quarks and Higgs boson candidates based on 10 kinematical variables.

Results at 8 TeV

Present signal strength : measurement systematics are dominated by background uncertainties

Drawbacks

- Combinatorial problem due to wrong jet assignment to heavy objects (t_{had} , t_{lep} and H)
- Method starts to fail when jets are merged due to large pT tops and Higgs

 $\rightarrow\,$ Dedicated analysis for boosted Higgs and boosted tops in the final state: **boosted analysis**

$t\overline{t}H$ BOOSTED TOPOLOGY

Boosted topology

- Boosted top and Higgs lead to collimated decay products that can be reconstructed inside large radius jets or fat jet (R ~ 1)
 Advantages
- Combinatorial problem is solved because each t_{had} , t_{lep} and H decay products are well separated in (η , φ) space
- High pT fat jets are more likely in ttH events \rightarrow background reduction

Signature

- t-jet (fat jet with R ~ 1.2, hadronically decaying W)
- *H*-jet (fat jet with $R \sim 1.0$)
- *b*-jet (anti-Kt R=0.4 from leptonically decaying W)
- Charged lepton+MET (leptonically W boson)
- Identify heavy objects by looking at substructures inside the fat jets (bb from H and b q q from t)

Which jet radius for fat jets

• Angular distance of the decays of heavy particles in $t\bar{t}H$ with PYTHIA sample at $\sqrt{s}=13 TeV$ at parton level

$$\Delta R_{b\overline{b}} = ((\varphi_b - \varphi_{\overline{b}})^2 + (\eta_b - \eta_{\overline{b}})^2)^{1/2} \sim 2m_H / p_T$$

 b and b jets are reconstructed inside the same fat jet of radius R if their angular distance is smaller than R.

 \rightarrow there is an equivalence between the radius of the fat jet and the pT threshold of the heavy particle that we want to reconstruct in this fat jet

For R = 1.0, we see in the plot that $pT_H > \sim 200 \text{ GeV}$

 The decay products of the hadronically decaying top are reconstructed inside an anti-Kt R=1.0 if pT_{thad} > ~300 GeV

Le Quilleuc Eloi

Jet substructures

- Identification of particles contained in the fat jets, exp : top 1 bjet, 2 light jets in the t-jet, H 2 b. Remove all other components inside the fat jet (mainly due to pile-up)
- Reduce the background from multijet production, since they do not have the same internal structure
- Example: HEPTopTagger, find the W and the b candidates inside top fat jets using mass and angular criteria.

- ← I+jet selection
 - pT fat jet > 200 GeV

Boosted topology

- Main drawback at 7 and 8 TeV : not enough statistics to perform the measurement in boosted topology (24 fb⁻¹ available data)
- At 13 TeV : 2 times more boosted ttH production cross section than at 8 TeV, and luminosity going up to 300 fb⁻¹

$$\begin{array}{c|c} p_{T,Higgs} > Y \ \text{GeV} \\ \hline p_{T,top} > X \ \text{GeV} \\ \hline X = 200 \\ X = 300 \\ \hline & \sim 8,3 \ \% \\ \sim 4,5 \ \% \\ \hline & \sim 2,0 \ \% \end{array}$$

Fraction of events with pT_{H} and pT_{thad} above a given high value at 13 TeV

- Simulation for 13 TeV run : simulate tt + jets background in boosted topology with large statistics
- However, simulating each tt generated event takes a long time (O(10 min) / event), and we would like to simulate mainly the events in boosted topology (interested in ~ 10 % of the simulated tt events)
 - \rightarrow define a filter that select boosted topologies at parton level

Boosted topology

Method : we divide the inclusive tt sample into sub-samples

- according to the hadronic top pT (pTthad)
- according to the top antitop pair pT (pTtt ~ Higgs boson pT for our signal).

Simulate all sub-samples independantly in order to have enough statistics in each sample.

 0.8 % of tt events in the boosted kinematical space

Filter efficiency at parton level for $t\bar{t}$ events

Conclusion

- The measurement of the $t\bar{t}H$ production at the LHC enables to obtain a direct measurement of the top Yukwa coupling
- This measurement will constrain the Higgs mechanism, and could give hints of new types of physics.
- 2 complementary analyses :

- The **standard resolved** analysis reconstructs the b and the light quark candidates from the ttH decays into anti-Kt R=0.4 jets. With 8 TeV data, the background uncertainty dominates the uncertainty of the measurement. The analysis will be pursued at 13 TeV in order to reduce the uncertainty on the measurement.

- The **boosted analysis** relies on the reconstruction of both hadronically decaying top and Higgs boson candidates into 2 fat jets, and will lead to smaller systematics, especially on background subtraction. This analysis will benefit from the presence of 2 times more events at high top and Higgs pT at 13 TeV and a high integrated luminosity of 300 fb⁻¹.

• Stay tuned, the measurement of the Yukawa coupling is coming soon

Thank you