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HISTORIC INTRODUCTION

s channel Unitarity screening considerations date back to the ISR epoch,

where they provided a simple way out of seemingly paradoxical traps.

1) Given that non screened σtot grows with energy, σel grows faster

(optical theorem). With no screening, σel will, eventually, be larger than σtot.

2) Elastic amplitude is central in impact parameter b, peaking at b=0.

Diffractive amplitudes are peripheral, peaking at large b, geting larger with s.

3) Elastic and diffractive scatterings are dynamically similar. However, the b

peripherality of the diffractive channels results in an energy dependence of

the diffractive cross sections which is less moderate than the elastic.

40 years latter, estimates of soft scattering require a unified analysis of

elastic and diffractive scatterings, incorporating s and t unitarity screenings.



S-CHANNEL UNITARITY

The simplest s-channel unitarity bound on ael(s, b) is obtained from

a diagonal re-scattering matrix, where repeated elastic scatterings

secure s-channel unitarity, 2Imael(s, b) = |ael(s, b)|2 + Gin(s, b).

i.e. At a given (s,b), σtot = σel + σinel. Its general solution is:

ael(s, b) = i
(

1 − e−Ω(s,b)/2
)

, Gin(s, b) = 1 − e−Ω(s,b). Ω is model dependent.

The output s-unitarity bound is | ael(s, b) |≤ 2, leading to very large total and

elastic LHC cross sections, which are not supported by LHC recent data.

In a Glauber/Gribov eikonal approximation, the input opacity Ω(s, b) is real.

It equals to the imaginary part of the input model Born term, a Pomeron

exchange in our context. The output ael(s, b) is imaginary.

The consequent bound is | ael(s, b) |≤ 1, which is the black disc bound.

In a single channel eikonal model, the screened cross sections are:

σtot = 2
∫

d2b
(

1 − e−Ω(s,b)/2
)

, σel =
∫

d2b
(

1 − e−Ω(s,b)/2
)2

, σinel =
∫

d2b
(

1 − e−Ω(s,b)
)

.



The figure shows the s-channel black bound, and the analyticity/crossing

bound implied by the ln2(s) expanding amplitude radius. The consequent

Froissart-Martin bound is: σtot ≤ Cln2(s/s0), s0 = 1GeV 2, C ∝ 1/2m2
π ≃ 30mb.

C is far too large to be relevant even at the TeV-scale.

s-unitarity implies: σel ≤ 1
2σtot and σinel ≥ 1

2σtot. At saturation, σel = σinel = 1
2σtot.

Introducing diffraction, significantly changes the features of s-unitarity.

However, the saturation signatures, stated above, remain valid.



GOOD-WALKER DECOMPOSITION

Consider a system of two orthonormal states, a hadron Ψh and a diffractive

state ΨD. ΨD replaces the continuous diffractive Fock states. Good-Walker

(GW) noted that Ψh and ΨD do not diagonalize the 2x2 interaction matrix T.

Let Ψ1 and Ψ2 be eigen states of T :

Ψh = αΨ1 + βΨ2, ΨD = −βΨ1 + αΨ2, α2 + β2 = 1.

The eigen states initiate 4 Ai,k elastic GW amplitudes (ψi+ψk → ψi+ψk). i,k=1,2.

For initial p(p̄)−p we have A1,2 = A2,1. I shall follow the GLM definition, in which

the mass distribution of ΨD is not defined and requires a specification.

The elastic, SD and DD amplitudes in a 2 channel screened GW model are:

ael(s, b) = i{α4A1,1 + 2α2β2A1,2 + β4A2,2},

asd(s, b) = iαβ{−α2A1,1 + (α2 − β2)A1,2 + β2A2,2},

add(s, b) = iα2β2{A1,1 − 2A1,2 + A2,2},

Ai,k(s, b) =
(

1 − e
1

2
Ωi,k(s,b)

)

≤ 1.



Introducing t-channel screening results in a distinction between GW

and non GW diffraction. In the GW sector,

• We obtain the Pumplin bound: σel + σGW
diff ≤ 1

2σtot.

σGW
diff is the sum of the GW soft diffractive cross sections.

• Below saturation, σel < 1
2σtot − σGW

diff and σinel > 1
2σtot + σGW

diff .

• ael(s, b) = 1, when and only when, A1,1(s, b) = A1,2(s, b) = A2,2(s, b) = 1.

• When ael(s, b) = 1, all diffractive amplitudes at the same (s,b) vanish.

• The saturation signature, σel = σinel = 1
2σtot, in a multi channel calculation

is coupled to σdiff = 0. Consequently, prior to saturation the diffractive

cross sections stop growing and start to decrease with energy.

• The above holds only in a multi channel analysis.

It does not hold in a single channel model.

• GW saturation signatures are valid also in the non GW sector.



CROSSED CHANNELED UNITARITY

Translating the concepts presented into a viable phenomenology requires a

specification of Ω(s, b), for which Regge Pomeron (IP ) theory is a powerful tool.

Mueller(1971) applied 3 body unitarity to equate the cross section of

a + b → M 2
sd + b to the triple Regge diagram a + b + b̄ → a + b + b̄, with a leading

3IP vertex term.

The 3IP approximation is valid when
m2

p

M2
sd

<< 1 and
M2

sd
s << 1.

The leading energy/mass dependences are dσ3IP

dt dM2
sd

∝ s2∆IP ( 1
M2

sd

)1+∆IP .



a) b)

Mueller’s 3IP approximation for non GW diffraction is the lowest order

of t-channel multi IP interactions, compatible with t-channel unitarity.

Recall that unitarity screening of GW (”low mass”) diffraction is carried out

explicitly by eikonalization, while the screening of non GW (”high mass”)

diffraction is carried out by the survival probability (to be discussed).

The figure shows the IP Green function. Multi IP interactions induce large

mass diffraction. Note the analogy with QED.

a) Enhanced diagrams induce the propagator renormalization.

b) Semi enhanced diagrams, present the pIPp vertex renormalization.



SURVIVAL PROBABILITY

The experimental signature of a IP exchanged reaction is a large rapidity gap

(LRG), devoid of hadrons in the η − φ lego plot, η = −ln(tanθ
2).

S2, the LRG survival probability, is a unitarity induced suppression factor of

non GW diffraction, soft or hard: S2 = σscreened
diff /σnonscreened

diff .

It is the probability that the LRG signature will not be filled with debris

(partons and/or hadrons), originating from either the s-channel re-scatterings

of the spectator partons, or by the t-channel multi IP interactions.

Denote the gap survival factor initiated by s-channel eikonalization S2
eik,

and the one initiated by t-channel multi IP interactions, S2
mIP .

The incoming projectiles are summed over (i,k).

S2 is obtained from a convolution of S2
eik and S2

mIP .

A simpler, reasonable approximation, is S2 = S2
eik · S2

mIP .



INCORPORATING GOOD-WALKER AND MUELLER DIFFRACTIONS

Both the experimental and theoretical studies of soft diffraction are hindered

by conflicting definitions of signatures and bounds.

In our context, I wish to discuss the relationship between GW and non GW

diffraction versus Mueller’s low and high diffractive mass.

Kaidalov, at the time, equated (without a proof) Mueller’s low diffractive mass

with GW diffraction, and high diffractive mass with non GW diffraction.

The problem is how do we define the bounds of these diffractive mass domains.

Following Kaidalov, GW low mass upper bound and Mueller’s high mass lower

bound, which is 4-5 GeV, coincide.

i.e. there is no overlap of low and high mass diffraction.

This point of view is shared by KMR, Ostapchenko and Poghosyan.

I find this assumption problematic, as it offers no procedure which secures

a smooth behaviour of the diffractive mass through this transition.



In the GLM model the GW diffractive mass is not defined. We presume

(also without a proof) that GW and non GW (high mass) diffraction have

the same upper bound, commonly taken to be 0.05s.

As we saw, The main difference between the 2 diffractive modes is that GW

is suppressed by eikonal screenings, while non GW is suppressed by the

survival prrobability which has an s-chanel eikonal component initiated by the

re-scattering of the initial projectiles and a t-channel screening induced by the

multi IP interactions.

In GLM most of the diffraction is GW, while in KMR it is non GW high mass.

Originally, GLM did not define a diffractive mass distribution. This has been

amended in one of GLM recent papers, where we consider the Pomeron as

a partonic probe. In this model:

IP -q interactions contribute to GW mass distribution.

IP -g interactions contribute to non GW, the high mass distribution.



THE PARTONIC POMERON

Current IP models differ in details, but have in common a relatively large

adjusted input ∆IP and a diminishing α′
IP .

Recall that, traditionally, ∆IP determines the energy dependence of the total,

elastic and diffractive cross sections while α′
IP determines the forward slopes.

This picture is modified in updated IP models in which s and t unitarity

screenings induce a smaller IP intercept at t=0, denoted ∆eff
IP , which gets

smaller with energy. The exceedingly small fitted α′
IP implies a partonic

description of the IP which leads to a pQCD interpretation.

Gribov’s partonic Regge theory provides the microscopic sub structure of the

IP where the slope of the IP trajectory is related to the mean transverse

momentum of the partonic dipoles constructing the Pomeron.

α′
IP ∝ 1/ < pt >2, accordingly: αS ∝ π/ln

(

< p2
t > /Λ2

QCD

)

<< 1.



We obtain a IP with hardness changing continuesly from hard (BFKL like) to

soft (Regge like). This is a non trivial relation as the soft IP is a moving

pole in J-plane, while, the BFKL hard IP is a branch cut, approximated,

some times, as a simple pole with ∆IP = 0.2 − 0.3, α′
IP ≃ 0.

GLM and KMR models are rooted in Gribov’s partonic IP theory with a hard

pQCD IP input. It is softened by unitarity screening (GLM), or the dependence

of its partons’ transverse momenta on their rapidity (KMR).

The two definitions are correlated.

GLM and KMR have a bound of validity, at 60(GLM) and 100(KMR) TeV,

implied by their approximations. Consequently, as attractive as updated

Pomeron models are, we can not utilize them above 100 TeV at the most.

To this end, the only relevant models are single channeled, most of which

have a logarithmic parametrization input such as [Aln(s) + Bln2(s)].



DIS: FROM SOFT TO HARD

The single IP picture, suggested by GLM and KMR models, implies a smooth

transition from the input hard IP to a soft IP . In a different context, such a

transition is supported by HERA dependence of λ = ∆IP on Q2 shown above.

Note, though, that a smooth transition from a soft to hard IP can be reproduced

also by a 2 IP s (soft and hard) model, such as Ostapchenko’s.



UPDATED POMERON MODELS

Any discussion relating to phenomenological updated Pomeron models,

has to distinguish between pre LHC and post LHC data.

To an extent, we observe a case in which a theoretical prejudice distorted

the phenomenological interpratation of Fermilab raw data.

Consider σtot(pp̄) at W=1.8 TeV:

Fermilab E710 measurement (PRD 1990) reported value was 72.1 ± 3.3 mb.

This value was supported (PLB 2002) by E811 who got 72.42 ± 1.55 mb.

CDF published (PRD 1994) a considerably higher value of 80.03 ± 2.24 mb.

The CDF number was rejected because its value was not consistent with the

popular DL and COMPETE models.

The 1.8 TeV low value cross sections, were supported by all updated IP models,

which predicted that LHC soft pp cross sections would be considerably smaller

than the actual TOTEM and ATLAS total and elastic pp cross sections.



Most models and parametrizations which reproduce TOTEM total and

elastic cross sections, quoted below, are close to CDF cross sections at 1.8 TeV.

TOTEM cross sections at 7 TeV are,

σtot(pp)=98.6±2.2mb

σel(pp)=25.4±1.1mb

They are supported by ATLAS cross sections,

σtot(pp)=95.4±1.4mb

σel(pp)=24.0±0.6mb

The TOTEM and ATLAS results force significant changes in the formulation

of presently revised updated IP models.



REVISED UPDATED POMERON MODELS

The desired improvement of the updated IP models can be achieved by either

improving the data fitting, or formulating the theoretical model, or both.

In the following I shall compare 6 updated Pomeron models, 3 by KMR

and one each by GLM, Ostapchenko (OSTAP) and Kaidalov-Poghosian (KP).

Note that, none of these models in their pre LHC version reproduced the

TOTEM-ATLAS p-p cross sections. OSTAP and KP output are pre LHC.

They had the largest cross sections which are not large enough to describe

the TOTEM-ATLAS data.

• GLM (Gotsman, Levin, Maor) operate with a single hard BFKL IP input,

in a 2 channel eikonal model. The hard input is softened by unitarity

screenings. As we shall show, the model, as such, under estimates the

TOTEM and ATLAS cross sections. GLM chose to modify their data fitting

procedure by fixing the secondary Regge parameters from the low energy



data base and then fit the IP parameters from the over all data base.

The output changes of the fitted parameters are not dramatic:

∆IP changed from 0.21 to 0.23, and α′
IP changed from 0.0 to 0.028GeV −2.

These relatively small changes enabled us to obtain an excellent

reproduction of the elastic and diffractive soft cross sections in the

ISR-LHC range.

• KMR (Khoze, Martin, Ryskin) produced 3 single IP models:

One is a 2 channel eikonal model with ∆IP = 0.11, and α′
IP = 0.06GeV −2.

The second is a 3 eikonal channel with ∆IP = 0.14, and α′
IP = 0.1GeV −2.

The third model is an effective IP model, based on non-enhanced

eikonal which suppresses the growth of the soft cross sections.

To this end KMR fix ∆IP = 0.12, and α′
IP = 0.05GeV −2.



• Ostapchenko has made (pre LHC) a comprehensive calculation in the

framework of Reggeon Field Theory based on the resummation of both

enhanced and semi enhanced IP diagrams. To fit the elastic and

diffractive cross sections he assumed 2 Pomerons (set C):

αsoft = 1.14 + 0.14t and αhard = 1.31 + 0.085t.

• KP (Kaidalov and Poghosyan) model is based on Reggeon calculus.

They describe the soft diffraction data taking all non enhanced absorptive

corrections to the 3 Reggeon vertices and loop diagrams. It is a single

IP model with secondary Regge poles. Their IP trajectory is determined by

∆IP = 0.12 and α′
IP = 0.22GeV −2.

• A comparative table comparing the predictions of the models presented

above follows in the next page.



1.8 TeV GLM KMR14 KMR2C OSTAP(C) MBR∗ KP

σtot (mb) 79.2 77.0 77.2 73.0 81.03 75.0

σel (mb) 18.5 17.4 17.4 16.8 19.97 16.5

σSD (mb) 11.27 3.4(LM) 2.82(LM) 9.2 10.22 10.1

σDD (mb) 5.51 0.2(LM) 0.14(LM) 5.2 7.67 5.8

Bel (GeV−2) 17.4 16.8 17.5 17.8

7 TeV

σtot (mb) 98.6 98.7 96.4 93.3 98.3 96.4

σel (mb) 24.6 24.9 24.0 23.6 27.2 24.8

σSD (mb) 14.88 2.6(LM) 3.05(LM) 10.3 10.91 12.9

σDD (mb) 7.45 0.2(LM) 0.14(LM) 6.5 8.82 6.1

Bel (GeV−2) 20.2 19.7 19.8 19.0 19.0

14 TeV

σtot (mb) 109.0 112.7 108. 105. 109.5 108.

σel (mb) 27.9 30.1 27.9 28.2 32.1 29.5

σSD (mb) 17.41 3.5(LM) 3.15(LM) 11.0 11.26 14.3

σDD (mb) 8.38 0.2(LM) 0.14(LM) 7.1 9.47 6.4

Bel (GeV−2) 21.6 21.6 21.1 21.4 20.5



UNITARITY SATURATION

Unitarity saturation is coupled to 3 experimental signatures:

σinel
σtot

= σel
σtot

= 0.5, σtot
Bel

= 9π, σdiff=0 in a multi-channel model.

Following is p-p TeV-scale data relevant to the assessment of saturation:

CDF(1.8 TeV): σtot = 80.03 ± 2.24mb, σel = 19.70 ± 0.85mb, Bel = 16.98 ± 0.25GeV −2.

TOTEM(7 TeV): σtot = 98.3±0.2(stat)±2.8(sys)mb, σel = 24.8±0.2(stat)±2.8(sys)mb,

Bel = 20.1 ± 0.2(stat) ± 0.3(sys)GeV −2.

ATLAS(7 TeV): σtot = 95.4 ± 1.4mb, σel = 24.0 ± 0.6mb.

AUGER(57 TeV): σtot = 133 ± 13(stat)±17
20sys ± 16(Glauber)mb,

σinel = 92 ± 7(stat) ±9
11 (sys) ± 16(Glauber)mb.

We get: σinel
σtot

=0.754(CDF), 0.748(TOTEM), 0.748(ATLAS), 0.692(AUGER).

The numbers above suggest a very slow approach toward saturation, well above

the TeV-scale. Consequently, the study of pp saturation depends

on information above the TeV-scale.



There are 2 sources from which we may obtain the desired information:

• Cosmic Rays data. Recall that p-p cross sections obtained from p-Air data

have relatively large margin of errore. AUGER p-p cross sections are a

good example.

• Since updated IP models are confined to the TeV-scale, p-p cross sections

at higher energies can be calculated only in single channeled models, the

deficiencies of which have been stated before.

Out of a few single channeled nodels, I shall quote Block and Halzen (BH),

which reproduce well the inelastic and total cross sections at the TeV-scale.

The BH model can be applied at exceedingly high energies.

The prediction of BH at the Planck-scale (1.22·1016TeV ) is:

σinel/σtot = 1131mb/2067mb = 0.547.

It indicates that saturation will be attained, if at all, at non realistic energies.



The predicted multi channel vanishing of the diffractive cross sections

at saturation implies that σsd, which up to the TEVATRON grows

slowly with energy, will eventually start to reduce.

This may serve as an early signature that saturation is being approached.

Specifically, the preliminary TOTEM measurement of

σsd = 6.5 ± 1.3mb

3.4 < Msd < 1100GeV

2.4 · 10−7 < ξ < 0.025

suggests a radical change in the energy dependence of σsd/σinel which is

considerably smaller than its value at CDF.

σsd/σinel = 0.151(CDF), 0.088(TOTEM).

This feature, if correct, is, presently, particular to diffraction. It suggests

a much faster approach toward unitarity saturation than suggested by σinel
σtot

.
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TOTEM diffractive data is very preliminary. Regardless, the compatibility

between the information derived from different channels of soft scattering

deserves a very careful study!

The figures above show the GLM elastic, SD and DD b-amplitudes at

1.8, 7 and 14 TeV. The difference between our output and competing models

is not dramatic. The GLM SD cross sections (in mb) are:

σsd(W ) = σGW
sd + σnonGW

sd = 9.2 + 1, 95(1.8), 10.7+4.18(7), 11.5 + 5.81(14).



Recall that, EL, SD and DD cross section values are obtained from a b2

integration of the corresponding amplitude square. The growth of σsd, as a

function of W, is mainly a consequence of asd(s, b) moving slowly toward higher

b values. The net result is a continuation of SD moderate increase with energy.

Consequently, I do not expect a suppression of σsd at an energy of 7 TeV,

as inplied by TOTEM sd data and recent KMR papers.

An early reduction of the diffractive channels at relatively low energies, will

require, thus, a fundamental change in our interpretation of soft scattering

at the TeV-scale.

A summary of GLM results followes.



√
s TeV 1.8 7 8

σtot mb 79.2 98.6 101.

σel mb 18.5 24.6 25.2

σsd(M ≤ M0) mb 10.7+(2.8)nGW 10.9+(2.89)nGW

σsd(M ≤ 0.05s) mb 9.2+(1.95)nGW 10.7+(4.18)nGW 10.9+(4.3)nGW

σdd mb 5.12+(0.38)nGW 6.2+(1.166)nGW 6.32+(1.29)nGW

Bel GeV−2 17.4 20.2 20.4

BGW
dl GeV−2 6.36 8.01 8.15

σinel mb 60.7 74. 75.8
dσ
dt |t=0 mb/GeV2 326.34 506.4 530.7
√

s TeV 13 14 57

σtot mb 108.0 109.0 130.0

σel mb 27.5 27.9 34.8

σsd(M ≤ 0.05s) mb 11.4+(5.56)nGW 11.5+(5.81)nGW 13.0+(8.68)nGW

σdd mb 6.73+(1.47)nGW 6.78+(1.59)nGW 7.95+(5.19)nGW

Bel GeV−2 21.5 21.6 24.6

σinel mb 80.5 81.1 95.2
dσ
dt |t=0 mb/GeV2 597.6 608.11 879.2


