
Computing Platform
Benchmark

By

Boonyarit Changaival

King Mongkut’s University of Technology Thonburi

(KMUTT)

Introducing Myself!

 A summer student at CERN this year

Worked in ALICE O2 project

GPU benchmarking for ITS Cluster Finder

Carry on this summer project to be a

Master Thesis

Computing Platform Benchmark with two

advisors

Prof. Tiranee Achalakul, KMUTT

Mr. Sylvain Chapeland, ALICE O2, CERN

 Study platforms through various

implementations (CUDA, C, OpenCL) of
ALICE applications

2

Outline

 ALICE Upgrade

Why Platform Benchmarking?

 Survey Discussion

 Example Applications

 Evaluation Method

 Initial Result

Conclusion

3

ALICE Upgrade

Expected to be installed in 2018

What’s new?

Improve the read-out rate

Peak at 1TB/S

Improve Impact parameter resolution

Improve tracking efficiency by

increasing granularity

Improve the computing system

Processing data online

4

Upgraded System
Architecture

5

Upgraded System
Architecture

 First Level Processor (FLP)

 connected to the receiver at the detector

 grouping and aggregating each collision of

particle inside the ring (Reducing data)

 Event Processing Node (EPN)

 For calculation and reconstruction for physic

experiment

 Receive processed data from FLP

6

Why benchmarking?

 To find out which platform produce the

highest throughput for ALICE

applications

 Each platform will have its own

implementation for optimum result

 The end result will be used to suggest the

suitable platform for each ALICE

application type

7

Targeted Accelerators

Graphic Processing Unit (GPU)

 High performance per cost and energy

efficiency

 Had been accepted and used widely to
accelerate scientific application

Many Integrated Core (MIC)

 Fewer processors than GPU, but each is more

powerful

 Highly portable (compare to CUDA&OpenCL)

 Accelerated Processing Unit (APU)

CPU+GPU on the same chip

GPU can access CPU memory directly

Consume low energy

8

Project Objectives

 To study the potential performance of

each accelerators for ALICE applications

 To study factor(s) that affect the

performance of applications on each

accelerators

 To study the performance of OpenCL on

all targeted accelerators

 To study the tradeoffs between each
accelerator

9

Questions

 The result should answer these questions.

What is the performance overhead in
OpenCL and CUDA? Does it worth the

portability tradeoff?

Which accelerator produces the best result

with OpenCL implementations?

Which accelerators should be suggested to

be integrated in the upgraded ALICE system?

10

Survey Discussion

 Several previous works had been done

 “A CPU, GPU, FPGA System for X-ray Image

Processing using High-speed Scientific

Cameras” (Binotto et al., 2013)

 “Accelerating Geospatial Applications on

Hybrid Architectures” (Lai et al., 2013)

 “MIC Acceleration of Short-Range Molecular

Dynamics Simulations” (Wu et al, 2010)

 Face detection, Ocean Surface simulation,

Dwarfs and the likes

11

Survey Discussion

 Yet, they are not quite connected with

ALICE Application

 Different Data Format

 Different Algorithms and problem

specifications

 To optimize the result, better work with

the real problem definitions

12

Application Categories

Categorized into 3 category

 Data Intensive

Computing Intensive

Communication Intensive

Communication intensive applications

are not presented in ALICE

Only Data Intensive and Computing Intensive
will be focused

13

Data Intensive

 High dependency between each

element in the data

 Data is needed to be accessed and

updated multiple times

 Example

 ITS Cluster Finder

Put particles into groups

Calculate the “Center of Gravity” of the cluster

Discard coordinates and use only CG to

represent the cluster

14

Computing Intensive

Most of the work is computation

 Little to none dependency between

elements

 Sometimes, Embarrassingly parallel can

be used

 Example

 TPC Track Identification

Using Hough Transform to identify track

True computing intensive application

Highly Parallelizable

15

Design of Experiment

 Responses

 Throughput

 Scalability

Control Factor: Type of platform,

Languages

GPU (CUDA and OpenCL)

MIC (C and OpenCL)

 APU (OpenCL)

 Blocking Factor: Application Category

 Data Intensive and Computing Intensive

16

Design of Experiment

 Experiment Plan

 Throughput Analysis

 Scalability Analysis

Vary the thread numbers

Plot the Throughput against Thread Numbers

The trend in the graph will determine the

scalability

17

Evaluation

 Throughput

 Set the baseline performance

Using the CPU result

 Speed up from the baseline is computed

 Determine the most suitable accelerator from

the highest throughput

 Scalability

 Fixed input size with varied thread numbers

 Varied input size and fixed thread numbers

 Throughput should be on the rise when thread
number is increased

Maintain the peak performance when input
size is increased

18

Initial Result

 ITS Cluster Finder on Tesla K20xm

19

Initial Result

OpenCL implementation of ITS Cluster

Finder was completed

 Showed similar results as CUDA

 APU and MIC is not yet tested

 Next is to improve it with the pipeline
method

20

Discussion

 High dependency made it hard to work

efficiently on GPU

GPU provide very little synchronization in

Kernel

 Not in the GPU specialties: Only load,

compare and store

 Data Intensive should perform better on

MIC (from speculation)

 Data Intensive can then be separate

into two

 With dependency and No dependency

21

Expected Milestone

 January, 2015

Optimize CUDA and OpenCL implementation

of Cluster Finder

C Implementation for Cluster Finder to be

tested on MIC

 Study the TPC Track Identification problem

definition and design

 February, 2015

Complete all implementations of TPC Track

Identification

 Acquire more examples for implementation

22

Conclusion

 ALICE Upgrade calls for a high

performance computing system

Cope with the higher read-out rate

Online processing

 Accelerators are aimed to be integrated

to increase the throughput

 Benchmark is done to suggest the most

suitable platform

 Using ALICE applications to benchmark

GPU, MIC and APU

23

