
A Volunteered Computing Platform
An opportunistic use of CPU cycles from mobile devices

Smartphone today

• Smartphones and tablets are becoming

increasingly powerful and rising quickly in

popularity.

Computing device sales comparison

Smartphone charging behaviors

• A study on the availability of task execution periods
(presented in the CWC project)

• Identify and attempt to utilize idle periods of smartphones

• Profile the charging behaviors of users through an

Android App

• 3 states —> plugged, unplugged and shutdown

• Tracks total bytes transmitted and received over

WIFI and cellular network

Charging interval: day—> 30 mins and night —> 7 hours

User is unlikely to be actively using the phone at night, less than 2 MB

Users have at least 3 hours of idle charging at night

Smartphone charging behaviors (2)

Volunteered Computing

• Donation of CPU cycles to help solving

scientific problems

www.volunteer-computing.org

http://www.volunteer-computing.org
http://www.volunteer-computing.org
http://www.volunteer-computing.org
http://www.volunteer-computing.org

Key Idea of White Rabbit

Volunteered computing power for

technological advancement in Sciences

• Make use of idle computing resources.

• Promote the importance of Sciences.

• Create a new educational channel for sciences.

White Rabbit will bring ALICE

home to you

White Rabbit: Aims & Objectives

• To promote the ALICE Experiment to the communities

(in Asia and Europe)

• To promote sciences to young generations

• To build a light weight mobile volunteered computing
framework

• To aggregate computing power of smartphones and

exploit the wasted cycles of those devices while we

sleep

White Rabbit: The Plan for 2015-16

• Study, design and deploy a mobile volunteered computing

platform (Most likely based on the BOINC framework).

• Port a few of applications in the ALICE experiment (such as “TOF

detector calibration”) onto White Rabbit

• Validate the protocol

• Evaluate the performance

• Design new services: “rewarding scheme”, “social network

Enabled”, and “education delivery”

• Deliverables

• White Rabbit (Implementation and Deployment)

• New services as add-on modules

• 1-2 Publications

Notes on Related Technologies

Use the idle time on your computer to cure diseases,

study global warming, discover pulsars,

and do many other types of scientific research.

The Berkeley Open Infrastructure for Network
Computing

BOINC

BOINC‘s Adoptions

SETI@Home
- 3 million participants

- 600 TFLOPS

Folding@home
- 300,000 contributors

- 5 PFLOPS sustained

A research project that uses volunteered computing to

run simulations of the ATLAS experiment

• Hardware

• A reasonably powerful modern 64-bit computer with

at least 4GB of memory is required.

• Software

• VirtualBox ~500MB

• BOINC Client

• Each work unit downloads a small set of input data and

runs for approximately 1 to 2 hours depending on the

computer's processor speed.

Virtual LHC@home

• The Virtual LHC@home project (formerly known as

Test4Theory) allows users to participate in running

simulations of high-energy particle physics using their

home computers.

• The results are submitted to a database which is used

as a common resource by both experimental and

theoretical scientists working on the Large Hadron

Collider at CERN.

Limitations of BOINC

• The BOINC server can only be executed on GNU/Linux-

based operating systems.

• The platform is relatively heavy with lots of embedded

modules.

• Researchers creating BOINC projects must learn the

BOINC programming API and be proficient in

• Linux system administration

• MySQL administration

• The Extensible Markup Language (XML), and C++.

• Limited documentation and very few tools to facilitate

the creation of new projects, resulting in a long, manual

process.

SLINC
Simple Light-weight Infrastructure for Network Computing

The existing volunteer computing frameworks are too complex,

limiting, and difficult to use for scientists.

• Goal: to create a new framework that simplifies the process of

creating volunteer computing projects. The framework should be

scalable with modular and object-oriented design.

• Server: partitioning input data into work units, distributing work

units to clients, and processing and validating results for each

work unit.

• Client: request work units from the project server, compute the

result for each work unit, and return the result to the server.

• Each module can be located on different physical computers

and all components can communicate via XML-RPC

SLINC: Architecture

Other Related Works

• Ibis : an open source Java based high performance

distributed computing platform with a version on

Android.

• AVRF : Android Volunteered Resource Framework,

designed to allow Android phones to act as volunteer

workers for distributed computing tasks.

• Hyrax : A cloud computing platform on mobile

devices using the Mapreduce concept.

Why BOINC?

• It’s the only platform with multiple actual usages in

mega-science projects.

• It’s a mature platform with relatively strong

supporting communities.

• So…...this is an easy decision!

BOINCOID
A Project aims at creating a volunteered computing

platform on ARM-based mobile devices.

HTC Power to Give

Samsung Power Sleep

Volunteered Computing on iPhone

• Technical and legal barriers

(It’s possible that in the future these issues can be

overcome.)

• Multitasking issues

• Ability to control hardware resources on devices

The 10 steps of

TOF Detector

Calibration

1 Collect input for computing

ALICE DB

Resource Manager

 2 Query for tasks

Resource Manager

Wait for client

connections

 3 Await input data and

Partition tasks upon receiving

 4 Collect user information

Resource Manager

Wait for client

connections

Install the application

Resource Manager

Wait for clients

 5 Sent request and resource status

User click ‘run’

Resource Manager

Scheduler distribute

jobs

• User priority

(complete and failure

history)

• Machine’s resources

6 Send an input file

Resource Manager

Compute …

Resource Manager

 7 Send heartbeat requests to track jobs

If fail to receive heartbeats,
reschedule the old tasks

Periodically

Probe the devices

Resource Manager

Finished

8 Send the partial results to server

Periodically

collect the results

Resource Manager

Compile and

Submit results

Finished

9 collect user’s computation time/failure

Resource Manager

Compile and

Submit results

10 Store results persistently

ALICE DB

Linux Server

NoSQL Database

collects input, output, users information

Input

Collection

Output

Collection
User

Collection

Logs

Collection

Resource Manager

Mobile Device 1

TOF Detector

streams real-time input

Input Receiver API

receives input

Job Partitioning

collect input to database

Job Scheduler

collect input to database

Devices Profiler Receiver

collects devices profile

Job Tracker

iterative tracks devices status (running, disappeared)

Job Distributer

assign task to each devices and collect results

Resource Manager

Job Request Module

sent request to server

Compute Node

runs the tasks

Device Profiler

profiles device resource

Volunteer

Graphics User Interface

interacts with volunteer

Mobile Device N

Challenges

Power - There is only a limited amount of power available on

a mobile device at any given time.

Platform - Distributed applications targeted at mobile

platforms have to run on heterogeneous systems using a

variety of hardware, OS and libraries.

Network - A mobile device is often intermittently connected

to a network and connects to a variety of networks including

cellular, data, Wi-Fi.

User concerns - Mobile device owners may be concerned

with battery drainage and connectivity charges.

Plans

Power – Only activate computations when devices is being

charged (Offline ALICE applications only)

Platform – Android platform only (for now)

Network – Transfer data over WiFi only. If offline, cache the

results on the phone

User concerns – Rewarding schemes will be implemented as

a service to motivate users

Gamification on Social networks

Let’s share the wonderland of Sciences

to the general public

Happy Holidays

References

• Anderson, D. P., Cobb, J., Korpela, E., Lebofsky, M. and Werthimer, D.,

2002 , “SETI@home: an experiment in public-resource computing”, Co

mmunications of the ACM, , pp. 56-61.

• E. Marinelli., 2009, “Hyrax: cloud computing on mobile devices using

MapReduce.” Carnegie-mellon university Pittsburgh PA school of co

mputer science.

• J. Baldassari, D.Finkel and D. Toth, 2006, “SLINC: A Framework for volu

nteer computing”, the 18th IASTED International Conference on Parall

el and Distributed Computing and Systems

• David P. Anderson, 2004, “BOINC: A System for Public-Resource Com

puting and Storage”, 5th IEEE/ACM International Workshop on Grid C

omputing

• http://boinc.bakerlab.org/

TOF Detector

• A particle detector which can discriminate

between a lighter and a heavier elementary

particle of same momentum using their time

of flight between two scintillators.

• Consists of inspecting a large number of

events (>10^7)

• Detecting a maximum and then

merging all the results together

• Goal: To find an alternative way to run tasks by

using the idle cycle of smartphone

• Focus on energy-efficient and cost-effective

• (a) profile a charging behaviours of real phone

owners

• (b) Implement android application that provide

simple task migration, interrupted and resume

task executions

• (c) deploy a prototype of CWC and evaluate the

result (with 18 Android smartphones)

CWC: Computing While Charging

• a central server partitions a large input file into smaller pieces

• transmits the input partitions (together with the executable that processes

the input) to the smartphones in CWC.

• Upon receiving the executable and the corresponding input, the phones

execute the task in parallel

• Phones return results to the central server when they finish executing the

task.

• The central server performs a logical aggregation of the returned results

CWC: Computing While Charging

is the size (in KB) of job j’s executable

is the time that it takes phone i to receive

1 KB of data from the server

is the time that it takes for phone i to execute
the job j on 1 KB of input data.

CBP: Complementary bin packing

CWC: Computing While Charging

