

CWG10 Control, Configuration and Monitoring

Status and plans for Control, Configuration and Monitoring

16 December 2014

ALICE O² Asian Workshop 2014@Pusan

Outline

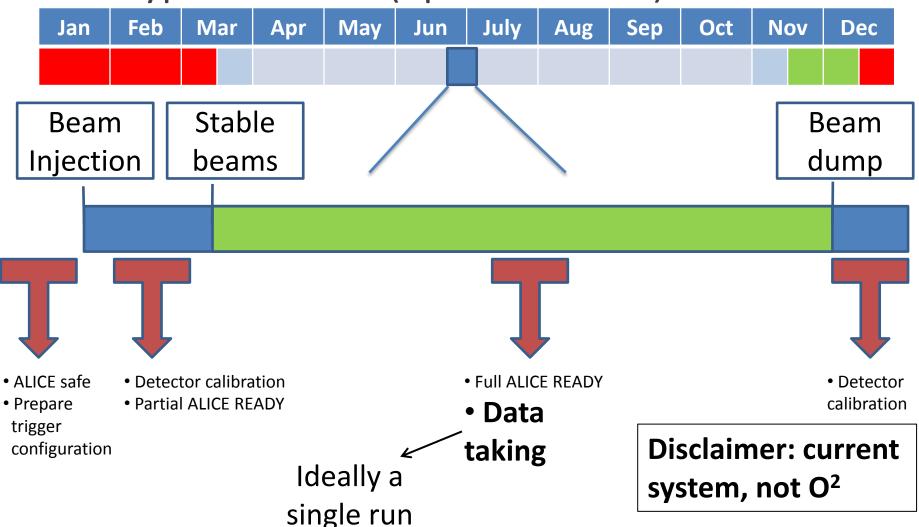
- Motivation
- A brief overview of data taking operations
- Lessons learned from Run 1
- CCM Overview
- Performance tests
- Next steps

Motivation

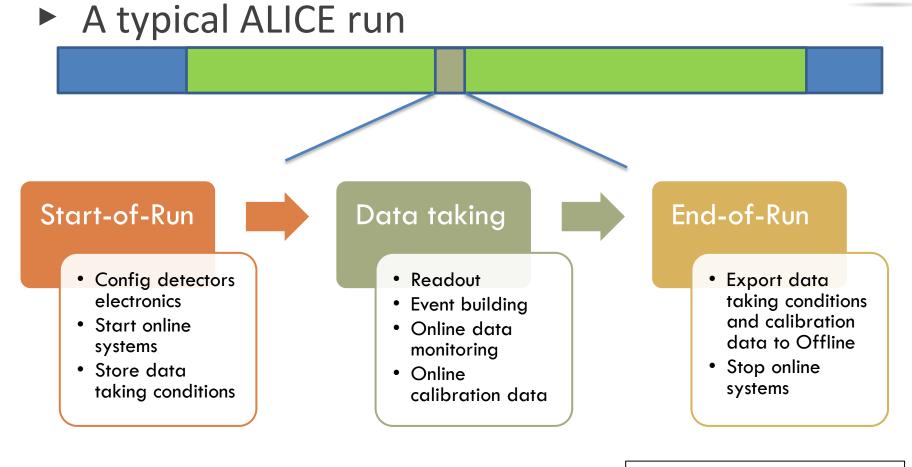
- Why do we need a Control System ?
 - Start and stop processes
 - Sequence of operations, synchronization
 - External systems
 - Automation
- Why do we need a Configuration System ?
 - Configure processes
- Why do we need a Monitoring System ?
 - Detect abnormal conditions
 - Automation

Team

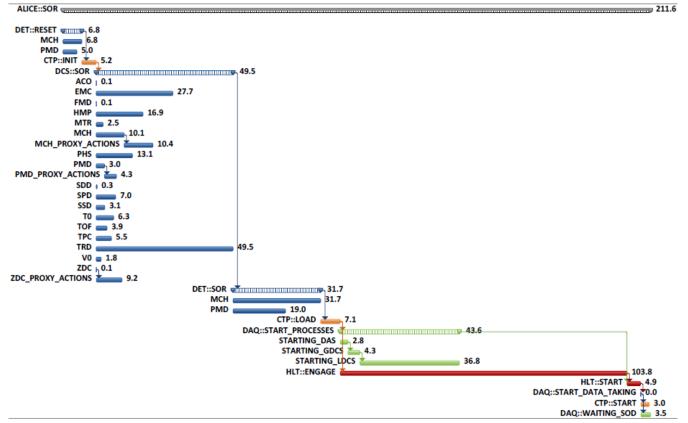
► CERN


- ► KMUTT, Thailand
 - See next presentation by Khanasin for an update

A typical LHC year



A typical LHC Fill (up to 30 hours)



ALICE O2 CWG10 Control, Configuration and Monitoring | ALICE O2 Asian Workshop 2014

Disclaimer: current system, not O²

Disclaimer: current system, not O²

Lessons learned from Run 1 (2010-2013)

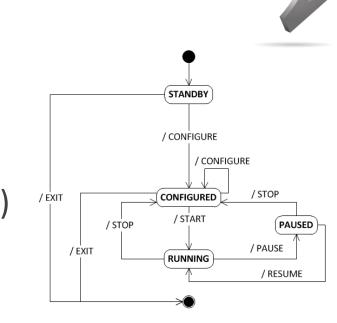
- Must be fast when changing run
 - More runs than expected
 - Not everything needs to be restarted

- Must be flexible
 - Not every problem needs to stop a run

- Must monitor everything
 - Data flow monitoring

Run 2: Pause

Run 2: Fast


SOR/EOR

Control in O² - Overview

- Process Management
 - Start/stop processes
 - Send commands to processes (CONFIGURE, PAUSE/RESUME, etc.)
 - Estimated: O(100k) processes
- Task Management

- Ensure that actions are executed in the correct order
- Automation
 - Automatically recover from errors
 - Automatically react to internal events (e.g. need more EPNs), external events (e.g. start of LHC collisions)

Control in O² - Notes

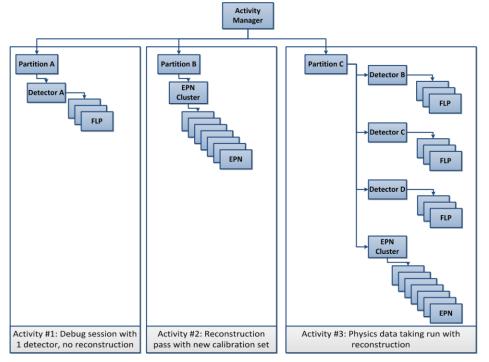
- Includes processes from online and offline
- Must control both synchronous and asynchronous tasks
- Cannot be seen as a batch system
 - Bound to external events (e.g. start of collisions)
 - Sequence of operations, synchronization points
 - Low latency very important

Configuration in O² - Overview

- Configuration distribution
 - Provide processes with needed configuration parameters
- Dynamic process (re)configuration
 - Essential to achieve fast run transition
- O(1GB) of configuration data

Monitoring in O² - Overview

- Data collection and archival
 - System monitoring (CPU, memory, I/O, etc.)
 - Application monitoring (data rates, link backpressure, internal buffer status, etc.)
 - O(600KHz) of monitoring data
- Alarms and action triggering
 - Support shift crew, experts
 - Feedback to Control system

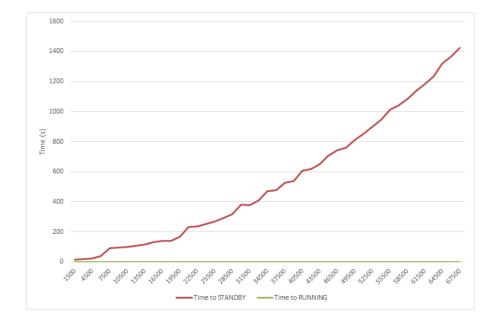

Monitoring in O² - Notes

- Includes metrics from online and offline
- Includes both low and high frequency metrics
 - Low: every 30 seconds, system metrics
 - High: every second, link status
- Permanent storage will be the limiting factor
 - No need to store everything, can filter "interesting" values

ALICE O2 CWG10 Control, Configuration and Monitoring | ALICE O2 Asian Workshop 2014

Performance Tests: Control

- ► Tool: SMI (State Machine Interface)
- ► Setup:
 - Level 0 SMI domain: Partition CCM
 - Level 1 SMI domain: Detector CCMs EPN Cluster CCM
 - Level 2 SMI domain: FLP CCMs, EPN CCMs
 - Level 2 SMI proxy: local process



ALICE O2 CWG10 Control, Configuration and Monitoring | ALICE O2 Asian Workshop 2014

Performance Tests: Control

- ► Setup:
 - 46 hosts
 - 1 Level 0 domain
 - 20 Level 1 domains
 - 1350 Level 2 domains
 - ► 67500 proxies

- Increase due to initial lookup in DIM DNS
- Conclusion: cannot use in current version

Performance Tests: Monitoring

- MonALISA + ApMon
- ► Setup:
 - 10 sender nodes, up to 1000 threads per host (ApMon)
 - I MonALISA service, all historical record disabled
- Result: 52 KHz without data loss
- Conclusion: could use 12+ collectors to reach 600 KHz

Performance Tests: Monitoring

- Zabbix
- ► Setup:
 - 10 sender nodes, up to 10 processes per host
 - I Zabbix Server node, 200 threads, permanent storage disabled (in-memory history enabled)
- Result: 30 KHz without data loss
- Conclusion: could use 20+ collectors to reach 600 KHz

By Andres Gomez Ramirez

Next steps

- Finalise TDR
- Perform more tests:
 - Control: boost library + ZeroMQ
 - Configuration: ZooKeeper
 - Monitoring: MonALISA, Zabbix with permanent storage
- Provide CCM systems for ALFA prototype (CWG13)
- Refine design