Computing Platforms
GPU Computing Platforms

Introducing collaboration members — Korea University (KU)
ALICE TPC online tracking algorithm on a GPU

.""' t““.p, A
-, - o B
i) S 1 50 vy
ity pizat T N %
o LT e &N, L S o
, S A e RSt S e
AT B v l"s;--' s
A ot ST Co T T e R
” " 1 {li _ e ° ‘ (\l. 1, H 5 :-"w;-“". b 09 1
':1 8 w\n e La;mwrtmn\u ...t Su«u..

v — ——.

Joohyung Sun
Prof. Hyeonjoong Cho

ALICE Collaboration
Korea University, Sejong

4t ALICE ITS upgrade, MFT and O2 Asian Workshop 2014 @ Pusan

Introduction

Collaboration Institute, Korea University
Research goal

ALICE TPC online tracking algorithm on a GPU
Specification of benchmark platform

Introducing Korea University

Prof. Hyeonjoong Cho, Embedded Systems and Real-time Computing Laboratory

+~ Meeting of June 19t 2014 in KISTI

+ Proposal of contribution of KISTI and the Korea
University to the ALICE O2

+ Participants from KISTI, Korea University, and CERN

+ One of the suggested possible collaborations

v Benchmarking of detector-specific algorithms on some agreed
hardware platforms

v Multi-cores CPU, many-cores CPU, GPGPU, etc.

Our Research Goal

Prof. H. Cho and J. Sun, Korea University, Republic of Korea

« Collaboration institute

+ Prof. H. Cho, Institute Team Leader, Korea University,
Sejong, Republic of Korea

+ J. Sun, Deputy, Korea University, Sejong, Republic of
Korea

« Application benchmark on a modern GPU

+ Benchmarking different types of processors

v Kepler- and Maxwell-based architecture GPU

v Maxwell GPU is the successor to the Kepler and is the latest GPU

In this year
+ Reengineering detector data processing algorithms (GPU
tracker)
v Apply NVIDIA Kepler’s technologies
Hyper-Q and Dynamic parallelism

ALICE TPC Online Tracking Algorithm on a GPU

Detector-specific algorithms with parallel frameworks

« The online event reconstruction

+ Performs by the High-Level Trigger
+ The most complicated algorithm
+ Adapted to GPUs

v" GPU evolves into a general-purpose,
massively parallel processor

v NVIDIA Fermi, CUDA, and AMD
OpenCL

SANVIDIA. AMD 1

CUDA OpenCL™

CODING COMPETITION

TPC sector 0

.+ |TPC sector 35

. 5

. B

Cluster finder | " Cluster finder

. B

.

Sector tracker | »» s |Sector tracker

b

Track merger

3

ITS * ITS update

detector
. B

IPhysics analysis

¢

HLT reconstruction scheme
(Reference: David Rohr, CHEP2012)

Our Research Goal

Benchmarking platform

+ Specification of benchmark platform
+ CPU: Intel i7-4770 CPUs @ 3.4 GHz, 4-cores (HT, 8-cores)

+ GPU: NVIDIA Tesla K20c GPU

v Kepler-based architecture : . —ﬁ"'f—a
v 13 Multiprocessors " @von TESLA

v/ 192 CUDA cores per multiprocessor >

v 706 MHz (0.71 GHz) GPU Clock rate N s

v/ 2600 MHz Memory Clock rate |
v 320-bit Memory Bus Width

v Maximum number of threads per multiprocessor: 2048

v Maximum number of threads per block: 1024

v" Concurrent copy and kernel execution: Yes with 2 copy engines

Fermi and Previous Generation GPUs

Low the usage of GPU resources

+» Only one work queue
+ It can execute a work at a time
+ CPUs are not able to fully utilize GPU resources

FERMI
1 MPI* TASK AT A TIME

Low usage of GPU resources

Even though the GPU has
, plenty of computational
EesEEsane: resources

*Message Pass Interface IMPI) 7

Hyper-Q

Maximizing the usage of GPU resources

« Enabling multiple CPU cores to launch work on
a single GPU simultaneously
+ Increasing GPU utilization
+ Slashing CPU idle times
KEPLER

32 SIMULTANEQUS MP1 TASKS

32 work queues

N -
O = E;\ v Fully scheduled, synchronized,
S and managed all by itself
N oo '
—4 — T GPUs receive works from
—4- ——.:_, H 13 gueues at the same time
| \ v All of the works is being done
AN concurrentl
| N 4 :!'.‘.
| 2 4 —-:_Tl:;}/

Previous CUDA programming model

The communication between host and device

v Previous CUDA programming model
CPU GPU

The communications between

' —.]]]] CPU and GPU
. _.I[u v Can affect the application’s
| — performance
] | _M 11 {110 10 (I ~ Each cost as a time is not
m () negligible

—]

Dynamic Parallelism

Creating work on-the-fly

v CUDA programming model in Kepler

CPU GPU
Effectively allows to be run
D directly on GPU
- Saving the time for communications
| [0 (1
(1) (10
1

+» Enabling GPU to dynamically spawn new
threads
+ By adapting to the data

+ Without going back to the host CPU
10

Progress

Previous works
Current progress
Optimization with NVIDIA Visual Profiler

Previous Works

Benchmarking HLT tracker

+» Some results of benchmarking HLT tracker on
each GPU

+ NVIDIA Fermi (current version) 174 ms
+ NVIDIA GTX780 (Kepler) 155 ms
+ NVIDIA Titan (Kepler) 146 ms
+ AMD GCN 160 ms

Reference: P. Buncic and et al., “O2 Project”, ALICE LHCC Referee Meeting

12

Our Current Progress

ALICE TPC online tracking algorithm on a GPU

«~ Application benchmark

+ Tested on Kepler-based architecture GPU
v Maxwell-based architecture GPU will be benchmarked

+ To fully utilize the compute and data movement
capabilities of the GPU
v Optimization
v Hyper-Q is applied for enabling concurrent copy and ker
execution

v Dynamic parallelism will be applied for reducing the number of
communications between CPU and GPU

13

Comparison of Hyper-Q between GTX650 and K20c

NVIDIA Visual Profiler (nvvp)

+ Profiling GeForce GTX650 with 2 streams
+ Works are managed by one work queue

=| Streams

- Default
- Stream 84 I = B B N
- Stream 85 i B N EH B

B Kernel execution of algorithm
- Memory copy execution from CPU to GPU

+ All other copy and kernel executions wait for
previous executions

14

Comparison of Hyper-Q between GTX650 and K20c

NVIDIA Visual Profiler (nvvp)
[

« Profiling Tesla K20c with 2 streams
+ 32 work queues for concurrent executions

Kernel execution of algorithm
- Memory copy execution from CPU to GPU

+ Copy and kernels are executed concurrently

15

More Concurrent Executions

Tesla K20c, 8 streams

« Tesla K20c with 8 streams

0.72 s 0.73 s
=] Streams
724 ms | 724.5 ms 725 ms
=] Streams
- Default
~ Stream 8

- Strea
- Stream
- Stream
- Stream &%

S5 " Memcpy HtoD [async] | void AlIHLTTPCCAProcd
~ Stream 90 ‘ Me mcpy Hto Dc'['é‘SYh'(_.‘]‘ |

~ Stream 91

+ Copy and kernels in some of the streams more than two
are executed concurrently

16

Observation from Multiple Streams

The number of streams

+ Measuring specific compute kernels’ time per
the number of streams
+ The number of streams: 2~36

76 -
74 PrelnitRowBlocks <<< >>> tl
72] cudaMemcpyAsync traCk' ng
0 AliHI TR redUC s the <

g = nificant!y sing 2 Stream

% 66 It Slg ed Wlth us >

E 64 cOmpa

.g 62 4

8 60 -

=]
58 4
56
54

2 4 6 81012141618202224262830323436

The number of streams

Possible Reasons for Observation

The key for optimization

+~ The number of copy engines in GPU
+ E.g. Tesla K20c has only 2 copy engines

+ Limit as the number of works can be executed
concurrently

« Too short kernel execution time

+ It could be finished before another kernel execution is
arrived

+ The longest kernel execution time
v Only about 2 ms during this test

+ This observation will be a key
+ For optimizing Hyper-Q

18

Summary

Next research plans

+ Korea University

+ Prof. Hyeonjoong Cho, Institute Team Leader, Korea
University, Sejong, Republic of Korea

+ Joohyung Sun, Deputy, Korea University, Sejong,
Republic of Korea

+ Next research plans

+ Benchmarking Maxwell-based architecture GPU
v GeForce GTX 980, about $ 549

+ Efficiently applying GPU’s technologies
v Hyper-Q with scheduling of streams
v Dynamic parallelism with device memory management

19

Appendix. Actual Code for Dynamic Parallelism

Creating work on-the-fly

LU decomposition (Fermi)

dgetrf(N,N) {

forj=1to N
for i=1to 64
idamx <<< >>> > idamx ();
memcpy
dswap <<< >>> > dswap ();
memcpy
dscal <<< >>> ——— dscal ();
dger <<< >>> > dger ();
next i
memcpy
dlaswap <<< >>> < dlaswap ();
dtrsm <<< >>> > dtrsm ();
dgemm <<< >>> —_— dgemm ();
next j
J CPU code GPU code

20

Appendix. Actual Code for Dynamic Parallelism

Creating work on-the-fly

LU decomposition (Kepler)

dgetrf(N,N) {
dgetrf <<< >>> >

dgetrf(N,N) {
forj=1to N
for i=1 to 64
idamx <<< >>>
dswap <<< >>>
dscal <<< >>>
dger <<< >>>
next i
dlaswap <<< >>>
dtrsm <<< >>>
dgemm <<< >>>
next j

CPU is Free

synchronize();

) CPU code GPU code ,,

Appendix. Example of LU Decomposition

Profiling LU Decomposition using NVIDIA Visual Profiler (nvvp)

+ Tesla K20c, Context 1 (CUDA)
I Memcpy

L cgetrf_cdpentry <<<>>>

[=|5F 97.3% dgetrf cdpentry(Parameters_s*)

= 5F 11.3% void iamax_kernel<double, do...
L 5F 4.7% dlaswp(int, double*, int, int*, int.
L SF 3.3% _ nv_static 65_ 52 tmpxft_000..
- 5F 3.1% void swap_kernel<double, int=0.
= 5F 2.5% void scal_kernel val=double, do..
- 5F 0.3% dgemm_sm_heavy Idg_nn

= 5F 0.3% void trsm_left_kernel=double, in.
L 5F 0.2% dgemm_sm35_Idg_nn_64x8x12..
- 5F 0.1% dgemm_sm35 |dg nn_128x8x6..

22

