
Introducing collaboration members – Korea University (KU)

ALICE TPC online tracking algorithm on a GPU

Computing Platforms

 – GPU Computing Platforms

Joohyung Sun

Prof. Hyeonjoong Cho

ALICE Collaboration

Korea University, Sejong

4th ALICE ITS upgrade, MFT and O2 Asian Workshop 2014 @ Pusan

Collaboration Institute, Korea University

Research goal

ALICE TPC online tracking algorithm on a GPU

Specification of benchmark platform

Introduction

Introducing Korea University
Prof. Hyeonjoong Cho, Embedded Systems and Real-time Computing Laboratory

3

 Meeting of June 19th 2014 in KISTI

♦ Proposal of contribution of KISTI and the Korea

University to the ALICE O2

♦ Participants from KISTI, Korea University, and CERN

♦ One of the suggested possible collaborations

 Benchmarking of detector-specific algorithms on some agreed

hardware platforms

Multi-cores CPU, many-cores CPU, GPGPU, etc.

 Collaboration institute
♦ Prof. H. Cho, Institute Team Leader, Korea University,

Sejong, Republic of Korea

♦ J. Sun, Deputy, Korea University, Sejong, Republic of
Korea

 Application benchmark on a modern GPU
♦ Benchmarking different types of processors

 Kepler- and Maxwell-based architecture GPU

Maxwell GPU is the successor to the Kepler and is the latest GPU
in this year

♦ Reengineering detector data processing algorithms (GPU
tracker)
 Apply NVIDIA Kepler’s technologies

Hyper-Q and Dynamic parallelism

Our Research Goal
Prof. H. Cho and J. Sun, Korea University, Republic of Korea

4

 The online event reconstruction

♦ Performs by the High-Level Trigger

♦ The most complicated algorithm

♦ Adapted to GPUs

GPU evolves into a general-purpose,

 massively parallel processor

NVIDIA Fermi, CUDA, and AMD

 OpenCL

ALICE TPC Online Tracking Algorithm on a GPU
Detector-specific algorithms with parallel frameworks

5

HLT reconstruction scheme

(Reference: David Rohr, CHEP2012)

 Specification of benchmark platform
♦ CPU: Intel i7-4770 CPUs @ 3.4 GHz, 4-cores (HT, 8-cores)

♦ GPU: NVIDIA Tesla K20c GPU
 Kepler-based architecture

 13 Multiprocessors

 192 CUDA cores per multiprocessor

 706 MHz (0.71 GHz) GPU Clock rate

 2600 MHz Memory Clock rate

 320-bit Memory Bus Width

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Concurrent copy and kernel execution: Yes with 2 copy engines

Our Research Goal
Benchmarking platform

6

 Only one work queue

♦ It can execute a work at a time

♦ CPUs are not able to fully utilize GPU resources

Fermi and Previous Generation GPUs
Low the usage of GPU resources

7

 Low usage of GPU resources

 Even though the GPU has

plenty of computational

resources

 Enabling multiple CPU cores to launch work on

a single GPU simultaneously

♦ Increasing GPU utilization

♦ Slashing CPU idle times

Hyper-Q
Maximizing the usage of GPU resources

8

 32 work queues

 Fully scheduled, synchronized,

and managed all by itself

 GPUs receive works from

queues at the same time

 All of the works is being done

concurrently

Previous CUDA programming model
The communication between host and device

9

 Previous CUDA programming model

 The communications between

CPU and GPU

 Can affect the application’s

performance

 Each cost as a time is not

negligible

 Enabling GPU to dynamically spawn new

threads

♦ By adapting to the data

♦ Without going back to the host CPU

Dynamic Parallelism
Creating work on-the-fly

10

 CUDA programming model in Kepler

 Effectively allows to be run

directly on GPU
 Saving the time for communications

Previous works

Current progress

Optimization with NVIDIA Visual Profiler

Progress

 Some results of benchmarking HLT tracker on

each GPU

♦ NVIDIA Fermi (current version) 174 ms

♦ NVIDIA GTX780 (Kepler) 155 ms

♦ NVIDIA Titan (Kepler) 146 ms

♦ AMD GCN 160 ms

Previous Works
Benchmarking HLT tracker

12

Reference: P. Buncic and et al., “O2 Project”, ALICE LHCC Referee Meeting

 Application benchmark

♦ Tested on Kepler-based architecture GPU

Maxwell-based architecture GPU will be benchmarked

♦ To fully utilize the compute and data movement

capabilities of the GPU

Optimization

Hyper-Q is applied for enabling concurrent copy and kernel

execution

Dynamic parallelism will be applied for reducing the number of

communications between CPU and GPU

Our Current Progress
ALICE TPC online tracking algorithm on a GPU

13

 Profiling GeForce GTX650 with 2 streams

♦ Works are managed by one work queue

♦ All other copy and kernel executions wait for

previous executions

Comparison of Hyper-Q between GTX650 and K20c

 NVIDIA Visual Profiler (nvvp)

14

Kernel execution of algorithm

Memory copy execution from CPU to GPU

 Profiling Tesla K20c with 2 streams

♦ 32 work queues for concurrent executions

♦ Copy and kernels are executed concurrently

Comparison of Hyper-Q between GTX650 and K20c

 NVIDIA Visual Profiler (nvvp)

15

Kernel execution of algorithm

Memory copy execution from CPU to GPU

 Tesla K20c with 8 streams

More Concurrent Executions
Tesla K20c, 8 streams

16

♦ Copy and kernels in some of the streams more than two

are executed concurrently

 Measuring specific compute kernels’ time per

the number of streams

♦ The number of streams: 2~36

Observation from Multiple Streams
The number of streams

17

PreInitRowBlocks <<< >>>
cudaMemcpyAsync (…, cudaMemcpyHostToDevice, …)
AliHLTTPCCANeighboursFinder <<< >>>
AliHLTTPCCANeighboursCleaner <<< >>>
AliHLTTPCCAStartHitsFinder <<< >>>
AliHLTTPCCAStartHitsSorter <<< >>>

 The number of copy engines in GPU

♦ E.g. Tesla K20c has only 2 copy engines

♦ Limit as the number of works can be executed

concurrently

 Too short kernel execution time

♦ It could be finished before another kernel execution is

arrived

♦ The longest kernel execution time

Only about 2 ms during this test

 This observation will be a key

♦ For optimizing Hyper-Q

Possible Reasons for Observation
The key for optimization

18

 Korea University

♦ Prof. Hyeonjoong Cho, Institute Team Leader, Korea

University, Sejong, Republic of Korea

♦ Joohyung Sun, Deputy, Korea University, Sejong,

Republic of Korea

 Next research plans

♦ Benchmarking Maxwell-based architecture GPU

GeForce GTX 980, about $ 549

♦ Efficiently applying GPU’s technologies

Hyper-Q with scheduling of streams

Dynamic parallelism with device memory management

Summary
Next research plans

19

Appendix. Actual Code for Dynamic Parallelism

 Creating work on-the-fly

20

dgetrf(N,N) {

 for j=1 to N

 for i=1 to 64

 idamx <<< >>>

 memcpy

 dswap <<< >>>

 memcpy

 dscal <<< >>>

 dger <<< >>>

 next i

 memcpy

 dlaswap <<< >>>

 dtrsm <<< >>>

 dgemm <<< >>>

 next j

}

 LU decomposition (Fermi)

 idamx ();

 dswap ();

 dscal ();

 dger ();

 dlaswap ();

 dtrsm ();

 dgemm ();

.

CPU code GPU code

Appendix. Actual Code for Dynamic Parallelism

 Creating work on-the-fly

21

dgetrf(N,N) {

 dgetrf <<< >>>

 synchronize();

}

 LU decomposition (Kepler)

dgetrf(N,N) {

 for j=1 to N

 for i=1 to 64

 idamx <<< >>>

 dswap <<< >>>

 dscal <<< >>>

 dger <<< >>>

 next i

 dlaswap <<< >>>

 dtrsm <<< >>>

 dgemm <<< >>>

 next j

}

CPU code GPU code

C
P
U

 i
s

F
re

e

Appendix. Example of LU Decomposition
Profiling LU Decomposition using NVIDIA Visual Profiler (nvvp)

22

 Tesla K20c, Context 1 (CUDA)

Memcpy

cgetrf_cdpentry <<< >>>

