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 Meeting of June 19th 2014 in KISTI 

♦ Proposal of contribution of KISTI and the Korea 

University to the ALICE O2 

♦ Participants from KISTI, Korea University, and CERN 

 

♦ One of the suggested possible collaborations 

 Benchmarking of detector-specific algorithms on some agreed 

hardware platforms 

Multi-cores CPU, many-cores CPU, GPGPU, etc. 



 Collaboration institute 
♦ Prof. H. Cho, Institute Team Leader, Korea University, 

Sejong, Republic of Korea 

♦ J. Sun, Deputy, Korea University, Sejong, Republic of 
Korea 

 

 Application benchmark on a modern GPU 
♦ Benchmarking different types of processors 

 Kepler- and Maxwell-based architecture GPU 

Maxwell GPU is the successor to the Kepler and is the latest GPU 
in this year 

♦ Reengineering detector data processing algorithms (GPU 
tracker) 
 Apply NVIDIA Kepler’s technologies 

Hyper-Q and Dynamic parallelism 

 

Our Research Goal 
Prof. H. Cho and J. Sun, Korea University, Republic of Korea 
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 The online event reconstruction  

♦ Performs by the High-Level Trigger 

♦ The most complicated algorithm 

♦ Adapted to GPUs  

GPU evolves into a general-purpose, 

 massively parallel processor 

NVIDIA Fermi, CUDA, and AMD  

 OpenCL 

 

ALICE TPC Online Tracking Algorithm on a GPU 
Detector-specific algorithms with parallel frameworks 
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HLT reconstruction scheme 

(Reference: David Rohr, CHEP2012) 



 Specification of benchmark platform 
♦ CPU: Intel i7-4770 CPUs @ 3.4 GHz, 4-cores (HT, 8-cores) 

 

♦ GPU: NVIDIA Tesla K20c GPU 
 Kepler-based architecture 

 13 Multiprocessors 

 192 CUDA cores per multiprocessor 

 706 MHz (0.71 GHz) GPU Clock rate 

 2600 MHz Memory Clock rate 

 320-bit Memory Bus Width 

Maximum number of threads per multiprocessor: 2048 

Maximum number of threads per block: 1024 

Concurrent copy and kernel execution: Yes with 2 copy engines 

Our Research Goal 
Benchmarking platform 
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 Only one work queue 

♦ It can execute a work at a time 

♦ CPUs are not able to fully utilize GPU resources 

Fermi and Previous Generation GPUs 
Low the usage of GPU resources 
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 Low usage of GPU resources 

 Even though the GPU has 

plenty of computational 

resources 



 Enabling multiple CPU cores to launch work on 

a single GPU simultaneously 

♦ Increasing GPU utilization  

♦ Slashing CPU idle times 

 

Hyper-Q 
Maximizing the usage of GPU resources 
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 32 work queues 

 Fully scheduled, synchronized, 

and managed all by itself 

 GPUs receive works from 

queues at the same time 

 All of the works is being done 

concurrently 

 



Previous CUDA programming model 
The communication between host and device 
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 Previous CUDA programming model 

 The communications between 

CPU and GPU 

 Can affect the application’s 

performance 

 Each cost as a time is not 

negligible 

 

 

 



 Enabling GPU to dynamically spawn new 

threads  

♦ By adapting to the data  

♦ Without going back to the host CPU 

 

Dynamic Parallelism 
Creating work on-the-fly  
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 CUDA programming model in Kepler 

 Effectively allows to be run 

directly on GPU 
 Saving the time for communications 



Previous works 

Current progress 

Optimization with NVIDIA Visual Profiler 

 

Progress 



 Some results of benchmarking HLT tracker on 

each GPU 

♦ NVIDIA Fermi (current version)  174 ms 

♦ NVIDIA GTX780 (Kepler)  155 ms 

♦ NVIDIA Titan (Kepler)   146 ms 

♦ AMD GCN    160 ms 

 

 

Previous Works 
Benchmarking HLT tracker  
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Reference: P. Buncic and et al., “O2 Project”, ALICE LHCC Referee Meeting 



 Application benchmark 

♦ Tested on Kepler-based architecture GPU 

Maxwell-based architecture GPU will be benchmarked 

 

♦ To fully utilize the compute and data movement 

capabilities of the GPU  

Optimization 

Hyper-Q is applied for enabling concurrent copy and kernel 

execution 

Dynamic parallelism will be applied for reducing the number of 

communications between CPU and GPU 

Our Current Progress 
ALICE TPC online tracking algorithm on a GPU 
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 Profiling GeForce GTX650 with 2 streams 

♦ Works are managed by one work queue 

 

 

 

 

 

 

♦ All other copy and kernel executions wait for 

previous executions 

 

 

 

Comparison of Hyper-Q between GTX650 and K20c 

 NVIDIA Visual Profiler (nvvp) 
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Kernel execution of algorithm 

Memory copy execution from CPU to GPU 



 Profiling Tesla K20c with 2 streams 

♦ 32 work queues for concurrent executions 

 

 

 

 

 

 

 

♦ Copy and kernels are executed concurrently 

Comparison of Hyper-Q between GTX650 and K20c 

 NVIDIA Visual Profiler (nvvp) 
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Kernel execution of algorithm 

Memory copy execution from CPU to GPU 



 Tesla K20c with 8 streams 

 

 

 

 

 

More Concurrent Executions 
Tesla K20c, 8 streams 
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♦ Copy and kernels in some of the streams more than two 

are executed concurrently 



 Measuring specific compute kernels’ time per 

the number of streams 

♦ The number of streams: 2~36 

 

Observation from Multiple Streams 
The number of streams 
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PreInitRowBlocks <<< >>> 
cudaMemcpyAsync (…, cudaMemcpyHostToDevice, …) 
AliHLTTPCCANeighboursFinder <<< >>> 
AliHLTTPCCANeighboursCleaner <<< >>> 
AliHLTTPCCAStartHitsFinder <<< >>> 
AliHLTTPCCAStartHitsSorter <<< >>> 



 The number of copy engines in GPU 

♦ E.g.  Tesla K20c has only 2 copy engines 

♦ Limit as the number of works can be executed 

concurrently 

 

 Too short kernel execution time 

♦ It could be finished before another kernel execution is 

arrived 

♦ The longest kernel execution time 

Only about 2 ms during this test 

 

 This observation will be a key 

♦ For optimizing Hyper-Q 

Possible Reasons for Observation 
The key for optimization 
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 Korea University 

♦ Prof. Hyeonjoong Cho, Institute Team Leader, Korea 

University, Sejong, Republic of Korea 

♦ Joohyung Sun, Deputy, Korea University, Sejong, 

Republic of Korea 

 

 Next research plans 

♦ Benchmarking Maxwell-based architecture GPU 

GeForce GTX 980, about $ 549 

 

♦ Efficiently applying GPU’s technologies 

Hyper-Q with scheduling of streams 

Dynamic parallelism with device memory management 

Summary 
Next research plans 
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Appendix. Actual Code for Dynamic Parallelism 

 Creating work on-the-fly  
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dgetrf(N,N) { 

     for j=1 to N 

          for i=1 to 64 

               idamx <<< >>> 

           memcpy 

           dswap <<< >>> 

           memcpy 

           dscal <<< >>> 

           dger <<< >>> 

          next i 

 

          memcpy 

          dlaswap <<< >>> 

          dtrsm <<< >>> 

          dgemm <<< >>> 

     next j 

} 

 LU decomposition (Fermi) 

 

 

 

               idamx (); 

  

           dswap (); 

            

           dscal (); 

           dger (); 

 

 

           

               dlaswap (); 

               dtrsm (); 

               dgemm (); 

. 

CPU code GPU code 



Appendix. Actual Code for Dynamic Parallelism 

 Creating work on-the-fly  
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dgetrf(N,N) { 

     dgetrf <<< >>> 

           

           

  

  

  

  

  

      

 

      

      

      

      

     synchronize(); 

} 

 LU decomposition (Kepler) 

dgetrf(N,N) { 

     for j=1 to N 

          for i=1 to 64 

               idamx <<< >>> 

           dswap <<< >>> 

           dscal <<< >>> 

           dger <<< >>> 

          next i 

          dlaswap <<< >>> 

          dtrsm <<< >>> 

          dgemm <<< >>> 

     next j 

} 

CPU code GPU code 
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Appendix. Example of LU Decomposition  
Profiling LU Decomposition using NVIDIA Visual Profiler (nvvp) 
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 Tesla K20c, Context 1 (CUDA) 

Memcpy 
 

cgetrf_cdpentry <<< >>> 

 


