
Introducing collaboration members – Korea University (KU)

ALICE TPC online tracking algorithm on a GPU

Computing Platforms

 – GPU Computing Platforms

Joohyung Sun

Prof. Hyeonjoong Cho

ALICE Collaboration

Korea University, Sejong

4th ALICE ITS upgrade, MFT and O2 Asian Workshop 2014 @ Pusan

Collaboration Institute, Korea University

Research goal

ALICE TPC online tracking algorithm on a GPU

Specification of benchmark platform

Introduction

Introducing Korea University
Prof. Hyeonjoong Cho, Embedded Systems and Real-time Computing Laboratory

3

 Meeting of June 19th 2014 in KISTI

♦ Proposal of contribution of KISTI and the Korea

University to the ALICE O2

♦ Participants from KISTI, Korea University, and CERN

♦ One of the suggested possible collaborations

 Benchmarking of detector-specific algorithms on some agreed

hardware platforms

Multi-cores CPU, many-cores CPU, GPGPU, etc.

 Collaboration institute
♦ Prof. H. Cho, Institute Team Leader, Korea University,

Sejong, Republic of Korea

♦ J. Sun, Deputy, Korea University, Sejong, Republic of
Korea

 Application benchmark on a modern GPU
♦ Benchmarking different types of processors

 Kepler- and Maxwell-based architecture GPU

Maxwell GPU is the successor to the Kepler and is the latest GPU
in this year

♦ Reengineering detector data processing algorithms (GPU
tracker)
 Apply NVIDIA Kepler’s technologies

Hyper-Q and Dynamic parallelism

Our Research Goal
Prof. H. Cho and J. Sun, Korea University, Republic of Korea

4

 The online event reconstruction

♦ Performs by the High-Level Trigger

♦ The most complicated algorithm

♦ Adapted to GPUs

GPU evolves into a general-purpose,

 massively parallel processor

NVIDIA Fermi, CUDA, and AMD

 OpenCL

ALICE TPC Online Tracking Algorithm on a GPU
Detector-specific algorithms with parallel frameworks

5

HLT reconstruction scheme

(Reference: David Rohr, CHEP2012)

 Specification of benchmark platform
♦ CPU: Intel i7-4770 CPUs @ 3.4 GHz, 4-cores (HT, 8-cores)

♦ GPU: NVIDIA Tesla K20c GPU
 Kepler-based architecture

 13 Multiprocessors

 192 CUDA cores per multiprocessor

 706 MHz (0.71 GHz) GPU Clock rate

 2600 MHz Memory Clock rate

 320-bit Memory Bus Width

Maximum number of threads per multiprocessor: 2048

Maximum number of threads per block: 1024

Concurrent copy and kernel execution: Yes with 2 copy engines

Our Research Goal
Benchmarking platform

6

 Only one work queue

♦ It can execute a work at a time

♦ CPUs are not able to fully utilize GPU resources

Fermi and Previous Generation GPUs
Low the usage of GPU resources

7

 Low usage of GPU resources

 Even though the GPU has

plenty of computational

resources

 Enabling multiple CPU cores to launch work on

a single GPU simultaneously

♦ Increasing GPU utilization

♦ Slashing CPU idle times

Hyper-Q
Maximizing the usage of GPU resources

8

 32 work queues

 Fully scheduled, synchronized,

and managed all by itself

 GPUs receive works from

queues at the same time

 All of the works is being done

concurrently

Previous CUDA programming model
The communication between host and device

9

 Previous CUDA programming model

 The communications between

CPU and GPU

 Can affect the application’s

performance

 Each cost as a time is not

negligible

 Enabling GPU to dynamically spawn new

threads

♦ By adapting to the data

♦ Without going back to the host CPU

Dynamic Parallelism
Creating work on-the-fly

10

 CUDA programming model in Kepler

 Effectively allows to be run

directly on GPU
 Saving the time for communications

Previous works

Current progress

Optimization with NVIDIA Visual Profiler

Progress

 Some results of benchmarking HLT tracker on

each GPU

♦ NVIDIA Fermi (current version) 174 ms

♦ NVIDIA GTX780 (Kepler) 155 ms

♦ NVIDIA Titan (Kepler) 146 ms

♦ AMD GCN 160 ms

Previous Works
Benchmarking HLT tracker

12

Reference: P. Buncic and et al., “O2 Project”, ALICE LHCC Referee Meeting

 Application benchmark

♦ Tested on Kepler-based architecture GPU

Maxwell-based architecture GPU will be benchmarked

♦ To fully utilize the compute and data movement

capabilities of the GPU

Optimization

Hyper-Q is applied for enabling concurrent copy and kernel

execution

Dynamic parallelism will be applied for reducing the number of

communications between CPU and GPU

Our Current Progress
ALICE TPC online tracking algorithm on a GPU

13

 Profiling GeForce GTX650 with 2 streams

♦ Works are managed by one work queue

♦ All other copy and kernel executions wait for

previous executions

Comparison of Hyper-Q between GTX650 and K20c

 NVIDIA Visual Profiler (nvvp)

14

Kernel execution of algorithm

Memory copy execution from CPU to GPU

 Profiling Tesla K20c with 2 streams

♦ 32 work queues for concurrent executions

♦ Copy and kernels are executed concurrently

Comparison of Hyper-Q between GTX650 and K20c

 NVIDIA Visual Profiler (nvvp)

15

Kernel execution of algorithm

Memory copy execution from CPU to GPU

 Tesla K20c with 8 streams

More Concurrent Executions
Tesla K20c, 8 streams

16

♦ Copy and kernels in some of the streams more than two

are executed concurrently

 Measuring specific compute kernels’ time per

the number of streams

♦ The number of streams: 2~36

Observation from Multiple Streams
The number of streams

17

PreInitRowBlocks <<< >>>
cudaMemcpyAsync (…, cudaMemcpyHostToDevice, …)
AliHLTTPCCANeighboursFinder <<< >>>
AliHLTTPCCANeighboursCleaner <<< >>>
AliHLTTPCCAStartHitsFinder <<< >>>
AliHLTTPCCAStartHitsSorter <<< >>>

 The number of copy engines in GPU

♦ E.g. Tesla K20c has only 2 copy engines

♦ Limit as the number of works can be executed

concurrently

 Too short kernel execution time

♦ It could be finished before another kernel execution is

arrived

♦ The longest kernel execution time

Only about 2 ms during this test

 This observation will be a key

♦ For optimizing Hyper-Q

Possible Reasons for Observation
The key for optimization

18

 Korea University

♦ Prof. Hyeonjoong Cho, Institute Team Leader, Korea

University, Sejong, Republic of Korea

♦ Joohyung Sun, Deputy, Korea University, Sejong,

Republic of Korea

 Next research plans

♦ Benchmarking Maxwell-based architecture GPU

GeForce GTX 980, about $ 549

♦ Efficiently applying GPU’s technologies

Hyper-Q with scheduling of streams

Dynamic parallelism with device memory management

Summary
Next research plans

19

Appendix. Actual Code for Dynamic Parallelism

 Creating work on-the-fly

20

dgetrf(N,N) {

 for j=1 to N

 for i=1 to 64

 idamx <<< >>>

 memcpy

 dswap <<< >>>

 memcpy

 dscal <<< >>>

 dger <<< >>>

 next i

 memcpy

 dlaswap <<< >>>

 dtrsm <<< >>>

 dgemm <<< >>>

 next j

}

 LU decomposition (Fermi)

 idamx ();

 dswap ();

 dscal ();

 dger ();

 dlaswap ();

 dtrsm ();

 dgemm ();

.

CPU code GPU code

Appendix. Actual Code for Dynamic Parallelism

 Creating work on-the-fly

21

dgetrf(N,N) {

 dgetrf <<< >>>

 synchronize();

}

 LU decomposition (Kepler)

dgetrf(N,N) {

 for j=1 to N

 for i=1 to 64

 idamx <<< >>>

 dswap <<< >>>

 dscal <<< >>>

 dger <<< >>>

 next i

 dlaswap <<< >>>

 dtrsm <<< >>>

 dgemm <<< >>>

 next j

}

CPU code GPU code

C
P
U

 i
s

F
re

e

Appendix. Example of LU Decomposition
Profiling LU Decomposition using NVIDIA Visual Profiler (nvvp)

22

 Tesla K20c, Context 1 (CUDA)

Memcpy

cgetrf_cdpentry <<< >>>

