Computing Platforms – GPU Computing Platforms

Introducing collaboration members – Korea University (KU) ALICE TPC online tracking algorithm on a GPU

Joohyung Sun Prof. Hyeonjoong Cho

ALICE Collaboration Korea University, Sejong

4th ALICE ITS upgrade, MFT and O2 Asian Workshop 2014 @ Pusan

Introduction

- **Collaboration Institute, Korea University**
- **Research goal**
- ALICE TPC online tracking algorithm on a GPU
- **Specification of benchmark platform**

Introducing Korea University

Prof. Hyeonjoong Cho, Embedded Systems and Real-time Computing Laboratory

Meeting of June 19th 2014 in KISTI

- Proposal of contribution of KISTI and the Korea University to the ALICE O2
- Participants from KISTI, Korea University, and CERN
- One of the suggested possible collaborations
 - Benchmarking of detector-specific algorithms on some agreed hardware platforms
 - ✓ Multi-cores CPU, many-cores CPU, GPGPU, etc.

Our Research Goal

Prof. H. Cho and J. Sun, Korea University, Republic of Korea

Collaboration institute

- Prof. H. Cho, Institute Team Leader, Korea University, Sejong, Republic of Korea
- J. Sun, Deputy, Korea University, Sejong, Republic of Korea

Application benchmark on a modern GPU

- Benchmarking different types of processors
 - ✓ Kepler- and Maxwell-based architecture GPU
 - Maxwell GPU is the successor to the Kepler and is the latest GPU in this year
- Reengineering detector data processing algorithms (GPU tracker)

Apply NVIDIA Kepler's technologies
 Hyper-Q and Dynamic parallelism

ALICE TPC Online Tracking Algorithm on a GPU

Detector-specific algorithms with parallel frameworks

The online event reconstruction

- Performs by the High-Level Trigger
- The most complicated algorithm
- Adapted to GPUs
 - GPU evolves into a general-purpose, massively parallel processor
 - NVIDIA Fermi, CUDA, and AMD OpenCL

HLT reconstruction scheme (Reference: David Rohr, CHEP2012)

Our Research Goal

Benchmarking platform

Specification of benchmark platform

CPU: Intel i7-4770 CPUs @ 3.4 GHz, 4-cores (HT, 8-cores)

GPU: NVIDIA Tesla K20c GPU

- ✓ Kepler-based architecture
- ✓ 13 Multiprocessors
- ✓ 192 CUDA cores per multiprocessor
- ✓ 706 MHz (0.71 GHz) GPU Clock rate
- ✓ 2600 MHz Memory Clock rate
- ✓ 320-bit Memory Bus Width
- Maximum number of threads per multiprocessor: 2048
- Maximum number of threads per block: 1024
- ✓ Concurrent copy and kernel execution: Yes with 2 copy engines

Fermi and Previous Generation GPUs

Low the usage of GPU resources

Only one work queue

- It can execute a work at a time
- CPUs are not able to fully utilize GPU resources

Low usage of GPU resources

 Even though the GPU has plenty of computational resources

*Message Pass Interface (MPI)

Hyper-Q Maximizing the usage of GPU resources

Enabling multiple CPU cores to launch work on a single GPU simultaneously

- Increasing GPU utilization
- Slashing CPU idle times

32 work queues

 Fully scheduled, synchronized, and managed all by itself

GPUs receive works from queues at the same time

 All of the works is being done concurrently

Previous CUDA programming model

The communication between host and device

Previous CUDA programming model

- The communications between CPU and GPU
 - Can affect the application's performance
 - Each cost as a time is not negligible

Dynamic Parallelism

Creating work on-the-fly

CUDA programming model in Kepler

Effectively allows to be run directly on GPU

Saving the time for communications

 Enabling GPU to dynamically spawn new threads

- By adapting to the data
- Without going back to the host CPU

Progress

Previous works

Current progress

Optimization with NVIDIA Visual Profiler

Previous Works

Benchmarking HLT tracker

Some results of benchmarking HLT tracker on each GPU

- NVIDIA Fermi (current version)
- NVIDIA GTX780 (Kepler)
- NVIDIA Titan (Kepler)
- AMD GCN

174 ms 155 ms 146 ms 160 ms

Reference: P. Buncic and et al., "O2 Project", ALICE LHCC Referee Meeting

Our Current Progress

ALICE TPC online tracking algorithm on a GPU

Application benchmark

- Tested on Kepler-based architecture GPU
 - Maxwell-based architecture GPU will be benchmarked
- To fully utilize the compute and data movement capabilities of the GPU
 - ✓ Optimization
 - Hyper-Q is applied for enabling concurrent copy and ker execution
 - Dynamic parallelism will be applied for reducing the number of communications between CPU and GPU

Comparison of Hyper-Q between GTX650 and K20c

NVIDIA Visual Profiler (nvvp)

Profiling GeForce GTX650 with 2 streams

Works are managed by one work queue

Kernel execution of algorithm

Memory copy execution from CPU to GPU

 All other copy and kernel executions wait for previous executions

Comparison of Hyper-Q between GTX650 and K20c

NVIDIA Visual Profiler (nvvp)

Profiling Tesla K20c with 2 streams

32 work queues for concurrent executions

Copy and kernels are executed concurrently

More Concurrent Executions

Tesla K20c, 8 streams

Tesla K20c with 8 streams

 Copy and kernels in some of the streams more than two are executed concurrently

Observation from Multiple Streams

The number of streams

Measuring specific compute kernels' time per the number of streams

The number of streams: 2~36

Possible Reasons for Observation

The key for optimization

The number of copy engines in GPU

- E.g. Tesla K20c has only 2 copy engines
- Limit as the number of works can be executed concurrently

Too short kernel execution time

- It could be finished before another kernel execution is arrived
- The longest kernel execution time
 - ✓ Only about 2 ms during this test

This observation will be a key

For optimizing Hyper-Q

Summary Next research plans

Korea University

- Prof. Hyeonjoong Cho, Institute Team Leader, Korea University, Sejong, Republic of Korea
- Joohyung Sun, Deputy, Korea University, Sejong, Republic of Korea

Next research plans

- Benchmarking Maxwell-based architecture GPU
 ✓ GeForce GTX 980, about \$ 549
- Efficiently applying GPU's technologies
 - Hyper-Q with scheduling of streams
 - ✓ Dynamic parallelism with device memory management

Appendix. Actual Code for Dynamic Parallelism

Creating work on-the-fly

LU decomposition (Fermi)

Appendix. Actual Code for Dynamic Parallelism

Creating work on-the-fly

Appendix. Example of LU Decomposition

Profiling LU Decomposition using NVIDIA Visual Profiler (nvvp)

Tesla K20c, Context 1 (CUDA)

Memcpy

cgetrf_cdpentry <<< >>>

dgetrf_cdpentry(Parameters_s*)

97.3% dgetrf_cdpentry(Parameters_s*)
 11.3% void iamax_kernel<double, do...
 4.7% dlaswp(int, double*, int, int*, int.
 3.3% __nv_static_65__52_tmpxft_000...
 3.1% void swap_kernel<double, int=0.
 2.5% void scal_kernel_val<double, do...
 0.3% dgemm_sm_heavy_ldg_nn
 0.3% void trsm_left_kernel<double, int.
 0.2% dgemm_sm35_ldg_nn_64x8x12...
 0.1% dgemm sm35 ldg_nn 128x8x6...

