
Control Configuration Monitoring

(CCM)

Khanasin Yamnual

King Mongkut’s University of Technology Thonburi

Faculty of Engineering

Department of Computer Engineering

Bangkok, Thailand

Team members

Krittaphat Pugdeethosapol Khanasin Yamnual Sirapop Na Ranong

Control Configuration Monitoring

What are CCM?

• support users and automate day-to-day operations.

• Control system: responsible for coordinating all the O2 processes.

• Configuration: ensures that both the application and environment

parameters are properly set.

• Monitoring: gathers information from the O2 system, identifying

unusual patterns and raising alarms.

Relationship between the CCM components

Architecture

Online environment

Control

• starting and stopping the processes running on the O2.

• includes not only the processes implementing the different

functional blocks but also processes providing auxiliary services

• sending commands to running processes

• Typical commands include pausing or resuming the ongoing

action

• reacts to internal and external events to achieve a high level of

automation

• FSM and Petri-net

• Finite State Machine

• is a tool to model the desired behavior of a sequential system.

• The designer has to develop a finite state model of the system

behavior and then designs a circuit that implements this model

• A FSM consists of several states. Inputs into the machine are

combined with the current state of the machine to determine the

new state or next state of the machine.

• Depending on the state of the machine, outputs are generated

based on either the state or the state and inputs of the machine.

FSM

Petri-net

• Mathematical modeling tools that capture

operational dynamics of discrete event systems

• Graphical Representation

• Modeling Language

• State-transition mechanism

• Event Scheduling mechanism

• Software design

• Workflow management

• Data Analysis

• Reliability Engineering

Applications

• STNPlay

• CPNTools (Colored PNs)

• Petri Net Kernel (in Java)

• YASPER (workflow analysis)

Software

• Concurrency

• Synchronization

• Precedence

• Priority

• Bottom up and top-down modeling

Suitable for Modeling

FSM VS. Petri-Net

FSM Petri-Net

Representation of how one single activity

can change its behavior over time,

reaction to internally or externally

triggered events.

Representation of how multiple

activities are coordinated.

Model of discrete behavior, which

consists of: a finite number of states,

transitions between two of those states,

and actions.

Model of showing the interaction
between asynchronous processes.

http://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Finite_State_Machines_and_Petri_Nets

http://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Finite_State_Machines_and_Petri_Nets
http://en.wikibooks.org/wiki/Embedded_Control_Systems_Design/Finite_State_Machines_and_Petri_Nets

• Simplicity of tasks

• Speed gained

Reason why Petri-Net

Activity

manager

Launch

Partition CCM
Configure

Partition

CCM

Launch EPN

Cluster CCM
Configure

EPN Cluster

CCM

External

System

CCM Server

Launch EPN

CCM
Configure EPN CCM

Launch Local

Process
Configure

Local

Process
Start

All selected EPNs

Start

Reconstruction pass

Pause or Resume

CCM Server

All selected EPNs

Activity

manager
Pause or Resume

Partition

CCM
EPN Cluster

CCM
Pause or Resume

Pause or Resume
EPN

CCM
Pause or Resume

Local

Processes

Reconstruction pass

Add local EPNs

CCM Server

All selected EPNs

Activity

manager
Add EPN

Partition

CCM
EPN Cluster

CCM
Add EPN Select EPNs to add

External System

Configure Launch PEN CCM
EPN

CCM

Launch Local

Processes

Local

Processes
Configure

Start

Reconstruction pass

Remove local EPNs

CCM Server

All selected EPNs to remove

Activity

manager
Remove EPN

Partition

CCM
EPN Cluster

CCM
Remove EPN

Select EPNs to

remove

External System

Stop
EPN

CCM
Stop

Local

Processes
Exit

Reconstruction pass

Stop

CCM Server

Activity

manager
Stop

Partition

CCM
EPN Cluster

CCM
Stop Stop

Stop
EPN

CCM

Local

Processes Exit

Exit Exit

Exit

All selected EPNs

Reconstruction pass

• Objectives
– to find the method to pause/resume and terminate within a small

window of time as well as the overhead associated with it

• Equipment

4 Laptops (CPU: Intel Centrino, Ram: 1 GB, OS: Cern Centos 7)

1 switch

• Experiment: start/pause/resume/terminate a process

on an individual node.

– Send a command to start that particular process.

– Send a command to pause that particular process.

– Send a command to resume that particular process.

– Send a command to terminate that particular process.

Control Test

Test result (Start process)

Number of

node(s)

Observation1

Time used

Observation2

Time used

Observation3

Time used

Observation4

Time used

Observation5

Time used

Average

Time used

1 node 0.435s 0.453s 0.428s 0.434s 0.48s 0.446s

2 nodes 0.988s 0.99s 0.949s 0.977s 0.969s 0.975s

3 nodes 1.458s 1.466s 1.438s 1.46s 1.389s 1.442s

Number of

node(s)

Observation1

Time used

Observation2

Time used

Observation3

Time used

Observation4

Time used

Observation5

Time used

Average

Time used

1 node 0.439s 0.473s 0.42s 0.475s 0.491s 0.46s

Number

of node(s)

Observation1

Time used

Observation2

Time used

Observation3

Time used

Observation4

Time used

Observation5

Time used

Average

Time used

1 node 0.448s 0.385s 0.515s 0.432s 0.445s 0.445s

Number of

node(s)

Observation1

Time used

Observation2

Time used

Observation3

Time used

Observation4

Time used

Observation5

Time used

Average

Time used

1 node 0.451s 0.451s 0.451s 0.513s 0.426s 0.458s

Start process

Pause process

Resume process

Stop process

• Implement the state machine of cases

• Test the state machine in simulated environment

• Do mathematical proof as well as optimize the state

machine

Plan to do

Configuration

• distributing the configuration.

• 2 Types of configuration;

• Static configuration

• Dynamic configuration

• Also for software installation and configuration.

Dynamic Configuration

• Parameters Configuration

Process

Main()

{

 Open file parameter for specific process;

 Read parameter from file;

 While (……………)

 {

 Library Call (……………);

 Read stream data;

 Do task;

 }

}

Library Call (parameters that want to change)

• Separate the thread to check if the file has been updated.

• If the file has been updated, it will read the new parameter and update the value

then kill thread.

• If the file has not been update, it will do nothing and kill thread.

Read stream data

Start Process

Read parameters

from file

Library Call

Do task

Parameters File

Main Thread

Check File has

been updated

Child Thread

Terminate thread

No

Read parameter

from file

Yes

Update value in

main thread

Flow Chart

- Will be unique for each process (can use process ID as file name)

 - Automatically generate the parameter file when start the process

 - File will be deleted when process has been terminated

Parameter File

Plan to do

- Start with one process in one computer (To test that library is worked)

 - Many process in one computer

 - One process in many computer

 - Many process in many computer

 - Experiment

 Collect the time that use to re-configure the parameter for each Test

Monitoring

• responsible for processing heartbeat data in quasi real

time in order to trigger alerts or take automatic

corrective actions.

• responsible for aggregating monitoring data streams

and persistently storing the relevant metrics.

• MonALISA and Zabbix

MonALISA

• is Java-based set of distributed, self-describing services.

• Offers the infrastructure to collect any type of information

• Can process data in near real time.

• Take automated decisions and perform actions based on it.

• ALICE uses this tool for monitoring online reconstruction.

• Is simple to install, configure and use.

Zabbix

• is an open-source software for monitoring of IT infrastructure.

• is used to monitor numerous parameters of a network and the

health and integrity of servers.

• Provide flexible notification mechanism that allows user to

configure e-mail based alerts for virtually any event.

• Goals are to identify and fix problems early and to measure and

analyze availability and performance

Basic data flow

How Zabbix works?

Conclusion

• Control

• Petri-Net

• Configuration

• Dynamic configuration

• Monitoring

• Find best monitoring tool

• Petri Nets: An Overview, Renata Kopach- Konrad

link: http://ww2.it.nuigalway.ie/staff/pbigioi/ct101/CT101_FiniteStateMachines.ppt

• Finite State Machines in Games, Jarret Raim

link: http://www.cse.lehigh.edu/~munoz/CSE497/classes/FSM_In_Games.ppt

• Finite State Machines, Mike Chen

link: http://www.cs.sjsu.edu/faculty/lee/cs147/Finite%20State%20Machines.ppt

• The Petri Net Method, Dr Chris Ling

link: http://www.utdallas.edu/~gupta/courses/semath/petri.ppt

• Petri Net (lecture10), CES808

link: http://www.cse.msu.edu/~cse808/note/lecture10.ppt

• An Introduction to Petri Nets, Marjan Sirjani

link: http://ece.ut.ac.ir/Classpages/S86/ECE658/slides/Petri.ppt

• Finite State Machines, Gaetano Borriello and Randy H. Katzl

link: http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt

• Zabbix

link: http://www.slideshare.net/psihius/zabbix-5713234

• Zabbix, Alexei Vladishev

link: http://www.slideshare.net/xsbr/alexei-vladishev-zabbixperformancetuning

References

http://ww2.it.nuigalway.ie/staff/pbigioi/ct101/CT101_FiniteStateMachines.ppt
http://www.cse.lehigh.edu/~munoz/CSE497/classes/FSM_In_Games.ppt
http://www.cs.sjsu.edu/faculty/lee/cs147/Finite State Machines.ppt
http://www.utdallas.edu/~gupta/courses/semath/petri.ppt
http://www.cse.msu.edu/~cse808/note/lecture10.ppt
http://ece.ut.ac.ir/Classpages/S86/ECE658/slides/Petri.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://www.slideshare.net/psihius/zabbix-5713234
http://www.slideshare.net/psihius/zabbix-5713234
http://www.slideshare.net/psihius/zabbix-5713234
http://www.slideshare.net/psihius/zabbix-5713234
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt
http://vada.skku.ac.kr/ClassInfo/digital-logic/zhou/07-FSM.ppt

