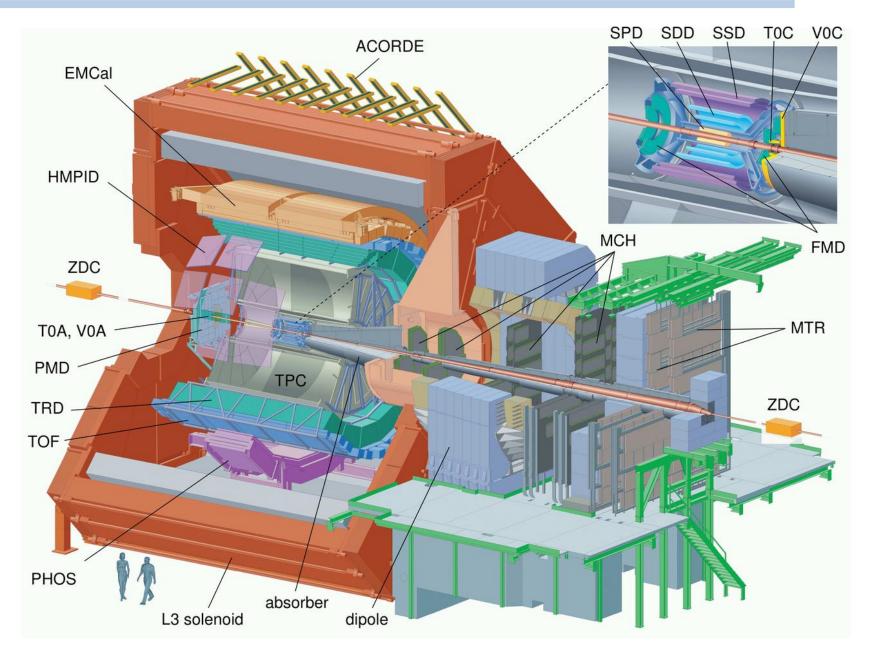


ALICE Inner Tracking System (ITS) Upgrade Overview

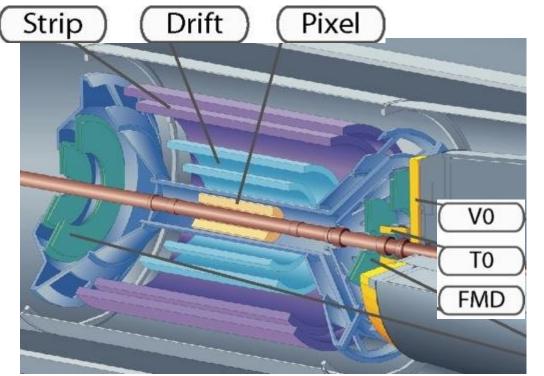
L. Musa (ALICE ITS Project Leader) - CERN

4th ALICE ITS, MFT and O2 Asian workshop Pusan, South Korea, 15-16 December 2014

ALICE ITS Upgrade Overview

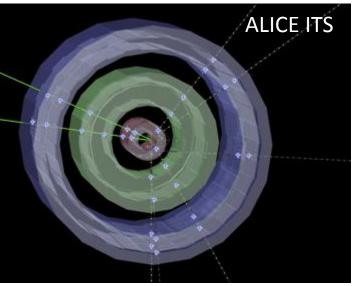

Status and Plans

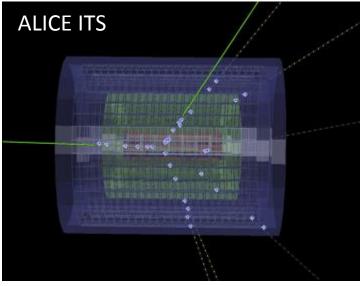
OUTLINE


- Upgrade of the ALICE ITS: motivations and specifications
- Layout and main components of the new ITS
- Status and plans
- Conclusions

Disclaimer: this talk is not a comprehensive review of the ITS upgrade but rather focuses on the aspects of the project relevant with Asian contribution

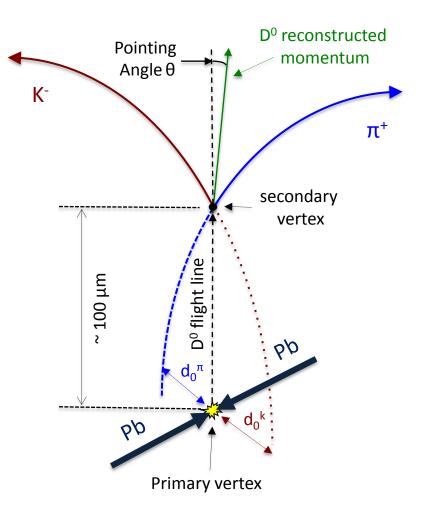
The Current ALICE Detector


The Current ALICE Inner Tracking System



Current ITS

6 concentric barrels, 3 different technologies


- 2 layers of silicon pixel (SPD)
- 2 layers of silicon drift (SDD)
- 2 layers of silicon strips (SSD)

Performance – Secondary vertex determination

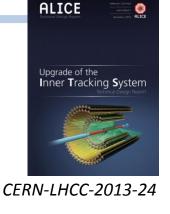
Example: D⁰ meson

Open charm

Particle	Decay Channel	c τ (μm)	
D ⁰	K ⁻ π ⁺ (3.8%)	123	
D+	K⁻ π⁺ π⁺ (9.5%)	312	
D _s +	K⁺ K⁻ π⁺ (5.2%)	150	
Λ_{c}^{\star}	p K⁻ π⁺ (5.0%)	60	

How precisely is d₀ measured with the current ITS detector?

Analysis based on decay topology and invariant mass technique

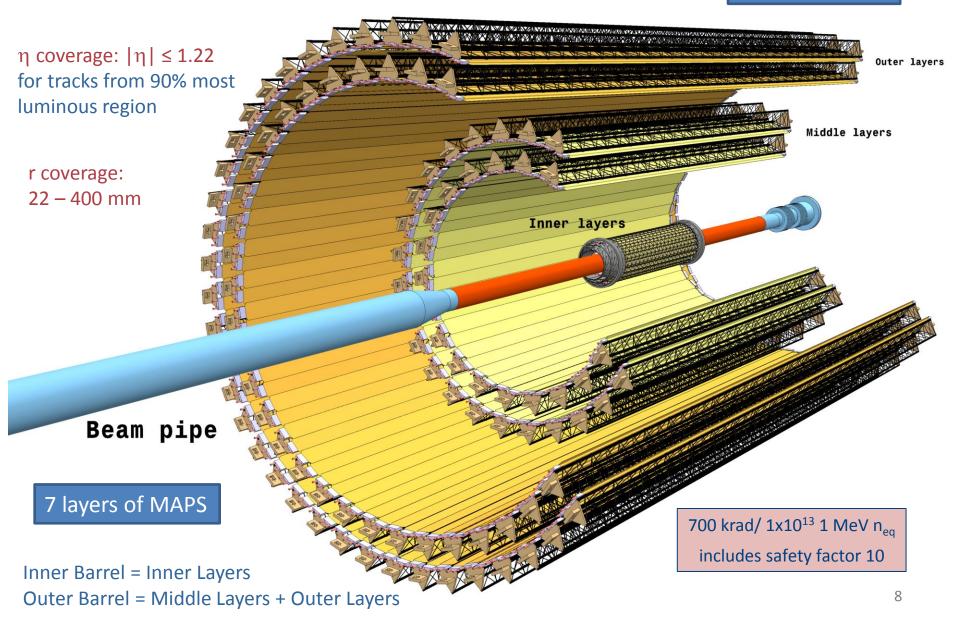

ALICE ITS Upgrade – Impact parameter resolution

Very good MC description colliding system 600 300 $d_{0,xy}$ resolution (μm) $d_{0,xy}$ resolution (μm) ALICE ALICE 500 250 pp $\sqrt{s} = 7 \text{ TeV}$ charged particles 400 ▲ pp $\sqrt{s} = 7 \text{ TeV}$ 200 \bigtriangleup data, pions **p**-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ data, kaons 300 data, protons • Pb-Pb $\sqrt{s_{NN}} = 2.76 \text{ TeV}$ 150 MC, pions MC, kaons 200 100 MC, protons 100 50 0 0 0.3 0.4 2 3 10^{-1} 10 1 p_T (GeV/c) p_{τ} (GeV/c) ALICE, Int. J. Mod. Phys. A29 (2014) 1430044 ALICE, Int. J. Mod. Phys. A29 (2014) 1430044

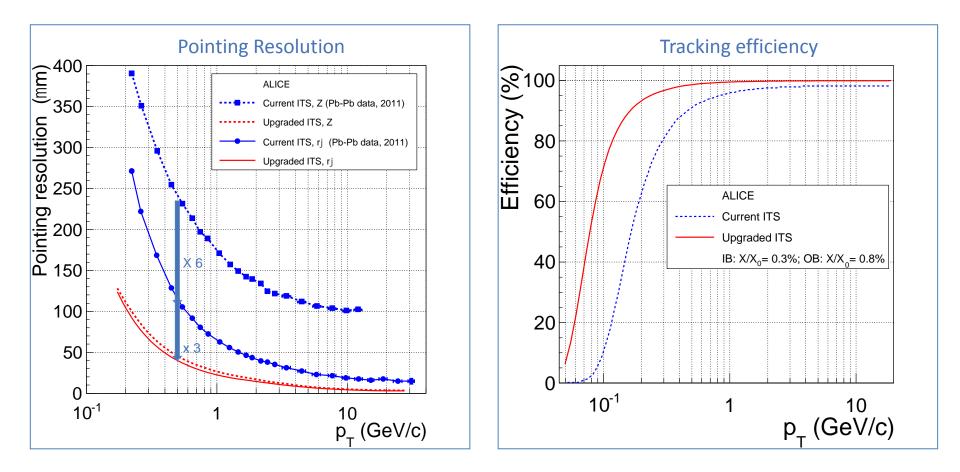
Very weak dependence on the

110 - 120 μ m at p_T = 500 MeV/c

- 1. Improve impact parameter resolution by a factor of ~3
- Get closer to IP (position of first layer): 39mm ⇒22mm
- Reduce x/X_0 /layer: ~1.14% \Rightarrow ~ 0.3% (for inner layers)
- Reduce pixel size: currently 50μm x 425μm 🜩 28μm x 28μm
- 2. Improve tracking efficiency and p_T resolution at low p_T
- Increase granularity:
 - 6 layers **>** 7 layers
 - silicon drift and strips ➡ pixels
- 3. Fast readout

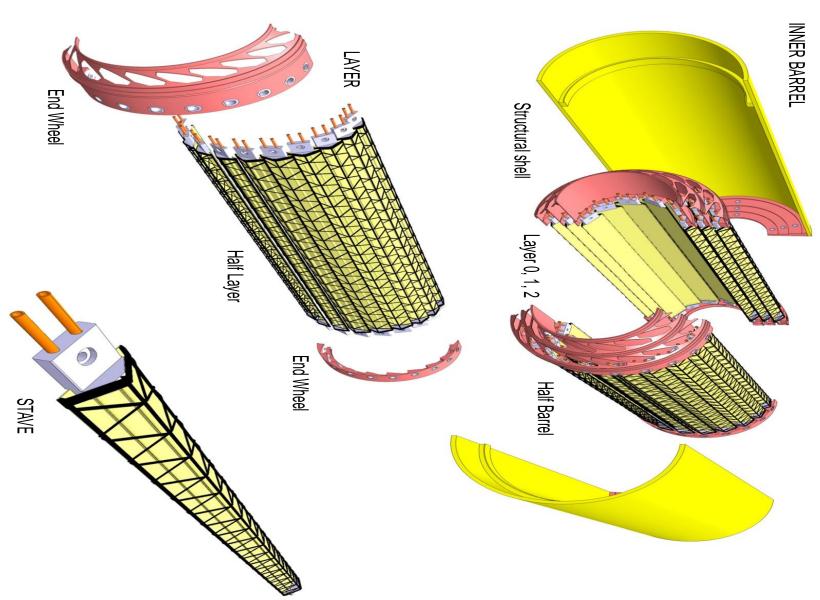


- readout Pb-Pb interactions at > 50 kHz and pp interactions at $\sim 2 \times 10^5$ Hz (currently limited at 1kHz with full ITS and ~ 3 kHz without silicon drift)
- 4. Fast insertion/removal for yearly maintenance
- possibility to replace non functioning detector modules during yearly shutdown

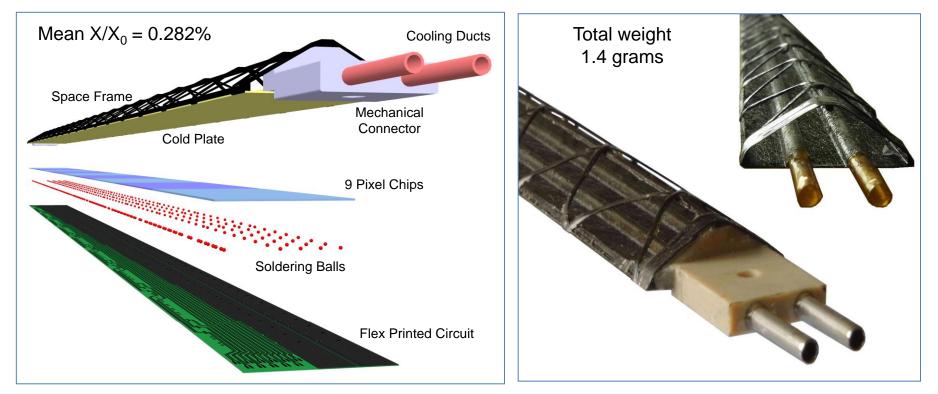

Install detector during LHCC LS2 (2018-19)

New ITS Layout

12.5 G-pixel camera (~10 m²)



Performance of new ITS



 \sim 40 μ m at p_T = 500 MeV/c

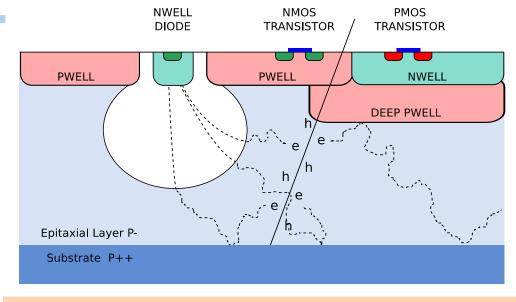
Inner Barrel

New ITS Layout - Inner Barrel

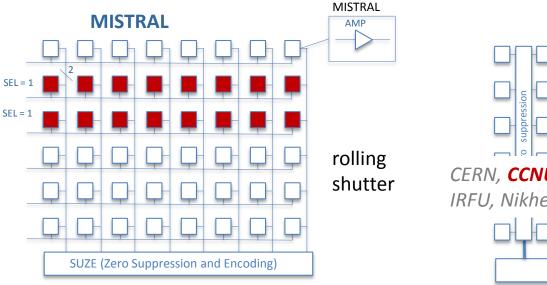
<Radius> (mm): 23,31,39

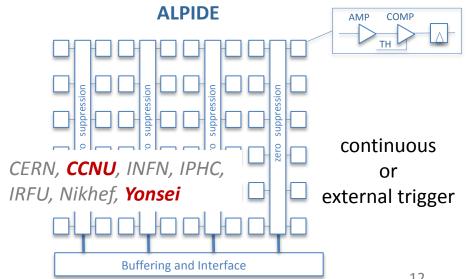
Nr. of staves: 12, 16, 20

Nr. of chips/layer: 108, 144, 180


Power density: < 100 mW/cm²

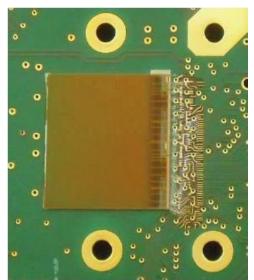
Length in z (mm): 270 Nr. of chips/stave: 9 Material thickness: ~ 0.3% X₀ Throughput (@100kHz): < 80 Mb/s×


PIXEL Chip


Monolithic PIXEL chip using Tower Jazz CMOS 0.18 µm

- Chip size: 15mm x 30mm
- Pixel pitch \sim 30 μ m
- Spatial resolution \sim 5 μ m
- Power density < 100 mW/cm²
- Architectures: MISTRAL, ALPIDE

Deep p-well allows truly CMOS circuit inside pixel


Pixel Chip - ALPIDE and MISTRAL full-scale prototypes in 2014

MISTRAL FSBB-M0 (Full Scale Building Block Mistral 0)

- About 1/3 of a complete sensor (approx. 9mm x 17mm)
- 416 x 416 pixels of **22μm x 33μm** (final chip **36μm x 62μm**)
- 40μs integration time (final chip ~ 20μs)
- Full chain working (front-end, discr., zero suppression)
- Chips (non irradiated) characterized at SPS

ALPIDE Full Scale prototype

- Dimensions: 30mm x 15 mm
- About 0.5 M pixels **28μm x 28μm**
- 40 nW front-end (4.7mW / cm²)
- ~40mW/cm² total
- Pulse width ~5 μs

Figure: Two FSBB M0

Chips characterized at PS, SPS, Frascati

- \Rightarrow Results presented by Magnus
- \Rightarrow Characterization at Korea test beam, analysis ongoing

Figure: picture of pALPIDEfs

ALPIDE: baseline solution

- Based on the results obtained in about 8 months of characterization, the current version of ALPIDE (p-ALPIDE1) represents already a suitable solution for the detector construction
- Completion and optimization of the chip via three new iterations

Version	Description	Subm (to TJ)	Delivery	Test
pALPIDE-2	final interface but no HSO	Dec 14	Feb 15	Feb – Jun 15
pALPIDE-3	Pixel FEE optimization, HSO (1.2 Gbit/s), in-pixel multi-event buffer, standard-cell version of matrix readout	Apr 15	Jun 15	Jun - Oct
ALPIDE final	Possible minor improvements	Aug 15	Oct 15	Nov - Jan

- Production (~1400 wafers) starts Feb '16
- Module and stave development programme in 2015 based on ALPIDE prototypes => presentations of Petra, Antonello and Vito

Pixel chip – plans till production (2/2)

MISTRAL-O (optimized for the Outer Barrel): fallback solution

The development of MISTRAL-O will be brought to completion, including the integration in the detector module and stave

- Mature architecture: based on the MIMOSA family
- Pixel pitch \sim 36µm x 62µm for a power of \sim 100mW/cm²
- The characterization of MISTRAL (22 μm x 33 μm) FSBB in 2014 produced good results
- The basic building blocks have been qualified as standalone circuits in '13 and '14

Version	Description	Subm (to TJ)	Delivery	Test
MISTRAL-O	(first) prototype with all final functionalities	June '15	Sep '15	Oct – Dec '15

• Qualification of OB modules and stave based on MISTRAL-O: Jan '15 – Apr '16

Plans for 2015 (and 2016) – Pixel Chip

Production and test of pixel chips

- Procurement of high resistivity silicon wafers (1500 wafers): 2015
- QA of raw silicon wafers (~10% of the total number): Jul '15 Feb '16
 - Verification of physical and electrical properties (measurement of resistivity) => TMEC (Thailand)
- CMOS Manufacturing
 - 4 lots, 340 wafers each: Feb '16 Jun '17 => TowerJazz
- CMOS QA
 - A new lot starts only after the test (wafer probe test) of about 5% of previous lot => Yonsei (Korea) (tbc)
- Ni-Au plating => (e.g. Pactech) market survey and tendering started
- Thinning & Dicing => (mechanical or Laser?) e.g. Rockwood, Stars
- Chip Test (Electrical, visual) => Yonsei, LIPI (Visual Inspection)

Plans for 2015 – Module assembly

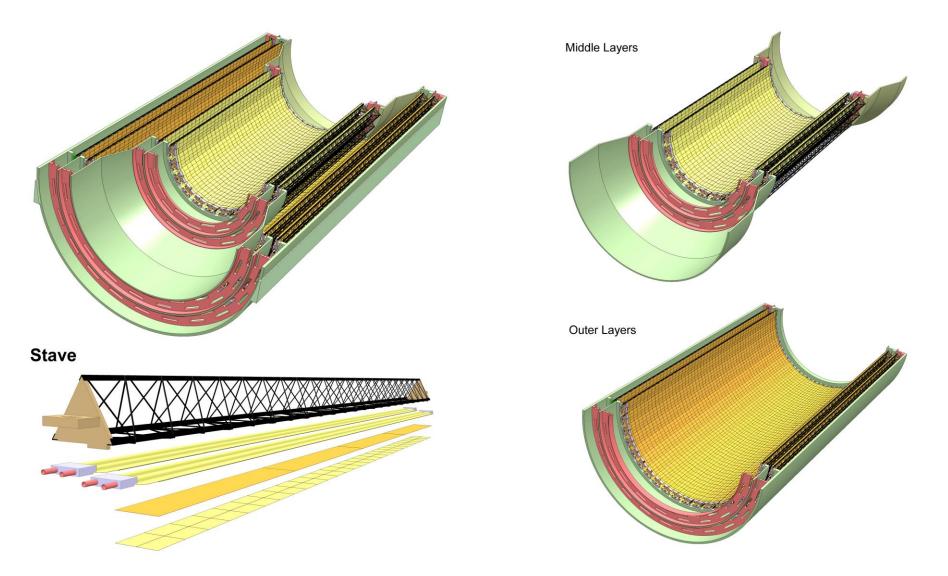
Construction of Modules and staves for the Inner Barrel and Outer barrel

- Procurement of Module Assembly Machine (MAM) => see Antonello
 - First delivery (CERN): Jun '15
 - Others: (Bari, Liverpool, Pusan, Strasbourg, Wuhan (tbc)): Jan–Jun '16
- Qualification of MAM and assembly procedure at CERN (participation of all teams involved in Module construction): Jul–Sep '15
 - Qualification (acceptance test) of MAM
 - Verification and optimization of assembly procedure
 - Verification and optimization of test procedure

Plans for 2015 – Readout electronics

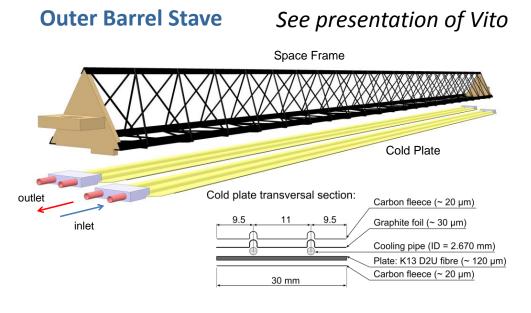
Readout Electronics: plans for 2015

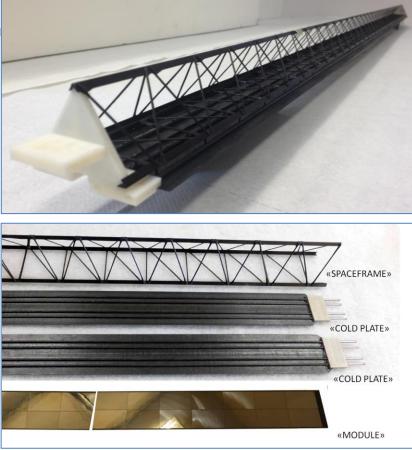
- Electrical signaling and communication protocol between RU and detector module defined
- Test of data transmission and bit error rate: done in 2014
 - Commercial LVDS transceivers (Nikhef, Prague, Kosice)
- To be done
 - Test communication via high-speed link (400 Mbit/s, 1.2 Gbit/s)
 - Test communication using parallel bus and control lines
 - pALPIDE-3
 - Test system developed by Bari => see Vito
 - Develop an FPGA-based system emulator COMSATS
 - Readout Unit prototype integrating link to CRU and Trigger


Conclusive Remarks

Important contribution of Asia to many critical aspects of R&D and construction. Some of the activities are well advanced (
), some are ramping-up (), other have not yet started and need to be confirmed/consolidated ()

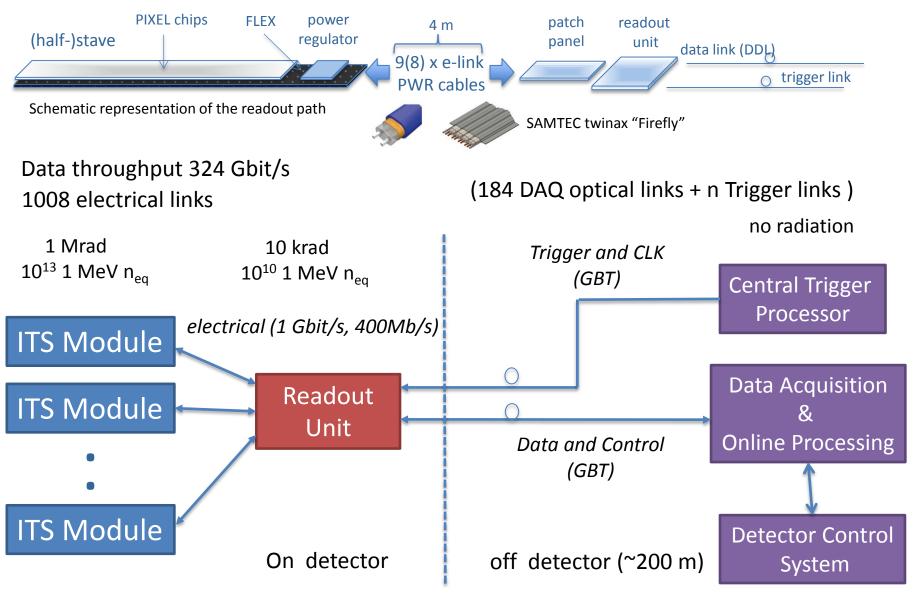
- China:
 - Pixel chip design, detector and physics simulations
 - OB module construction, readout electronics
- Korea:
 - Pixel chip design, pixel chip characterization, physics simulations
 - Pixel chip mass test, module construction, module construction QA
- Indonesia: Pixel chip mass test QA
- Pakistan: Pixel Chip TCAD simulations, FPGA-based system level simulation of stave readout
- Thailand:
 - Detector simulation, pixel chip characterization, silicon µ-channels
 - QA for CMOS raw wafers, CMOS wafers (laser) dicing


SPARES


Outer Barrel Support Structure and Assembly

Main structural elements have been prototyped in 2014

Outer Barrel



Outer Barrel (OB)

- <radius> (mm): 194, 247, 353, 405
- Nr. staves: 22, 28, 40, 46
- Nr. Chips/layer: (ML), (OL)
- Power density < 100 mW / cm²

Length (mm): 843 (ML), 1475 (OL) Nr. modules/stave: 4 (ML), 7 (OL) Material thickness: $\sim 0.8\% X_0$ Throughput (@100kHz): < 3Mb/s × cm⁻²

Readout – general scheme and data throughput

