

INHA University

Sensor characterization at INHA

4th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 @ KOREA

15 - 16 Dec 2014

Jong-han PARK

INHA University

Physics Motivation

A Large Ion Collider Experiment detector

- ALICE experiment is the dedicated heavy-ion experiment at the LHC.
- Characterization of QGP properties is done by studying multi-differential and unique observables such as light/heavy flavours, transverse momentum, flow, exotic objects etc.
 → It requires high statistics and precision measurements.
- ITS upgrade allows us to imporve vertexing and tracking toward precision measurement.

Beam pipe

Inner Tracking System upgrade

Advantage of new ITS

- 1. Impact parameter resolution increase by a factor of three
 - * Displacement between beam pipe and 1st layer:
 39mm →22mm
 - * Material budget : $\sim 1.14\% \rightarrow \sim 0.3\%$
- 2. Improve tracking efficiency and p_T resolution at low p_T
 - * Increse granularity
 - * Reduce pixel size
- 3. Fast read out

New ITS layout

4. Fast insertion/removal for yearly maintenance

To do list at INHA

- 1. Chip characterization test setup pALPIDEfs tests
- * Primary lab. test
 - FIFO, SCANDACS, THRESHOLD etc.
- * ⁵⁵Fe source scan
- Chip response uniformity and cluster characteristics
- 2. Module assembly system setup (together with PNU in the future)

pALPIDEfs

pwell opening

n+

nwe

prototype ALPIDE full scale

- Based on Monolithic Active Pixel Sensor technology (MAPS)
- $1.5 \times 30 \text{ cm}^2$ ٠
- 512×1024 sensitive pixels, $28 \times 28 \ \mu m^2$ ٠
- Four sub-matrices of 512×256 pixels ٠
- Organized in 32 regions (512×32 pixels) ٠
- Read out by 16 Priority Encoder circuits ٠

Sector	nwell diameter	Spacing	pwell opening	Reset	
1	2 µm	1 µm	4 µm	PMOS	
2	2 µm	2 µm	6 µm	PMOS	
3	2 µm	2 µm	6 µm	Diode	
4	2 µm	4 µm	10 µm	PMOS	

p⁻ p⁻

pALPIDEfs

prototype ALPIDE full scale

- Based on Monolithic Active Pixel Sensor technology (MAPS)
- $1.5 \times 30 \text{ cm}^2$
- 512×1024 sensitive pixels, $28 \times 28 \ \mu m^2$
- Four sub-matrices of 512×256 pixels
- Organized in 32 regions (512×32 pixels)
- Read out by 16 Priority Encoder circuits

Sector	nwell diameter	Spacing	pwell opening	Reset	
1	2 µm	1 µm	4 µm	PMOS	
2	2 µm	2 µm	6 µm	PMOS	
3	2 µm	2 µm	6 µm	Diode	
4	2 µm	4 µm	10 µm	PMOS	

pALPIDEfs

prototype ALPIDE full scale

- Based on Monolithic Active Pixel Sensor technology (MAPS)
- $1.5 \times 30 \text{ cm}^2$
- 512×1024 sensitive pixels, $28 \times 28 \ \mu m^2$
- Four sub-matrices of 512×256 pixels
- Organized in 32 regions (512×32 pixels)
- Read out by 16 Priority Encoder circuits

Sector	nwell diameter	Spacing	pwell opening	Reset	
1	2 µm	1 µm	4 µm	PMOS	
2	2 µm	2 µm	6 µm	PMOS	
3	2 µm	2 µm	6 µm	Diode	
4	2 µm	4 µm	10 µm	PMOS	

System in INHA

System in INHA

- Total 7 chips in INHA
- 1 thick chip + 6 thin chips
- Difference only wafer thickness
- DAQ board setting

Digital	1.8V	FPGA	1.8V
Analogue	1.8V	R18	500Ω

Primary lab test results for 7 chips

- All chips are performed by primary lab test (FIFO, SCANDACS, THRESHOLD)
- Checked IDD, IDDA values before and after configured

chip ID	Wafer	Die	STATUS	FIFO	SCANDACS	THRESHOLD
fs-1-39	1	39	OK	Passed	Done	Done
fs-2-20	2	20	OK	Passed	Done	Done
fs-6-17	6	17	OK	Passed	Done	Done
fs-6-22	6	22	OK	Passed	Done	Done
fs-8-29	8	29	OK	Passed	Done	Done
fs-9-20	9	20	OK	Passed	Done	Done
fs-9-21	9	21	ОК	Passed	Done	Done
 [1		

chip ID	nominal threshold (RMS)			noise				
	sector1	sector2	sector3	sector4	sector1	sector2	sector3	sector4
fs-1-39	189 (21)	189 (21)	166 (19)	193 (22)	9.8	7.7	3.6	6.3
fs-2-20	196 (19)	176 (17)	156 (15)	177 (17)	9.2	6.7	3.1	5.4
fs-6-17	202 (21)	178 (20)	156 (19)	177 (20)	9.8	6.8	2.8	5.6
fs-6-22	193 (18)	170 (17)	150 (16)	168 (17)	9.0	6.4	2.7	5.2
fs-8-29	169 (17)	152 (16)	135 (13)	152 (16)	7.8	6.3	2.9	5.1
fs-9-20	181 (18)	158 (17)	138 (14)	154 (16)	8.4	6.2	3.0	5.1
fs-9-21	194 (18)	171 (6.3)	149 (2.9)	163 (5.1)	8.8	6.3	2.9	5.1

4th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 | 15-16 Dec, 2014 | J. PARK

INHA University

Compare Threshold

4th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 | 15-16 Dec, 2014 | J. PARK

INHA University

Compare Noise

⁴th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 | 15-16 Dec, 2014 | J. PARK

Characterization test

Determine threshold and noise by S-curve

4th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 | 15-16 Dec, 2014 | J. PARK

INHA University

Threshold map

4th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 | 15-16 Dec, 2014 | J. PARK

at UNIVERSI

Characterization test

- Determine threshold and noise by S-curve
- Noise occupancy scan
 - * The charge threshold varies by two parameter : ITH / VCASN

INHA University

Noise occupancy without noise masking

INHA University

Noise occupancy with noise masking

Characterization test

- Determine threshold and noise by S-curve
- Noise occupancy scan
 - * The charge threshold varies by two parameter : ITH / VCASN
- Source scan
 - * using ⁵⁵Fe source : around 6 keV
 - * with noise masking

Source scan

Hit map

4th ALICE ITS upgrade, MFT and O₂ Asian Workshop 2014 | 15-16 Dec, 2014 | J. PARK

Beam test

 4^{th} ALICE ITS upgrade, MFT and O_2 Asian Workshop 2014 \mid 15-16 Dec, 2014 \mid J. PARK

Summary & Outlook

- Primary lab test for 7 chips are done.
- Check the trend of threshold and noise following each sectors over all chips.
- Noise is decreased by masking.
- Check the chip response using ⁵⁵Fe.
- Participated the beam test at Pohang with PNU
- Todo list
 - Source test and analysis over all chips
 - Source scan analysis
 - V_{BB} (back-bias voltage) dependency

Thank you for your attention!

Back up