Characterization of ITS upgrade prototype chips at Pusan

KyungEon Choi*, Jongsik Eum, Jiyoung Kim, In-Kwon Yoo

Pusan National University Department of Physics Busan, Republic of Korea

ITS-MFT and O² Asia Workshop @ Pusan December 15, 2014

PUSAN NATIONAL UNIVERSITY

\blacksquare Characterization of irradiated Explorer-1 chips with $^{55}\mathrm{Fe}$

 \bigcirc 60 MeV e⁻ test beam of irradiated Explorer-1 chips at Pohang

3 60 MeV e⁻ test beam of pALPIDEfs chips at Pohang

Reminder of previous workshop on June at Thailand

Milestones:

- Characterization system of Explorer-1 was fully commissioned.
- New lab space for mass test of chips and HIC assembly.
 - \rightarrow See Bong-Hwi's talk this afternoon.

Plan (characterization):

- Characterization of irradiated Explorer-1 chips with temperature control. \rightarrow Chips were delievered on October.
- Start to work on pALPIDEfs characterization
 - \rightarrow Jongsik and myself visited CERN last August for a month.

[New lab space for mass test and assembly]

Characterization of ITS upgrade prototype chips at Pusan

Outline

① Characterization of irradiated Explorer-1 chips with ⁵⁵Fe

❷ 60 MeV e[−] test beam of irradiated Explorer-1 chips at Pohang

60 MeV e⁻ test beam of pALPIDEfs chips at Pohang

Characterization of irradiated Explorer-1 chips with ⁵⁵Fe

• 18 μ m epitaxial layer thickness, 1k Ω cm resistivity, -6 V reverse bias voltage.

5/19

Comparsion of 20 μ m and 30 μ m pixel pitch

• 18 μ m epitaxial layer thickness, 1k Ω cm resistivity, -6 V reverse bias voltage.

- Charge collection efficiency of 20 μm pitch stay almost 100% while 30 μm pitch decreases with irradiation level.
- Capacitace increases for both pixel pitches.

(** gain and cmc correction applied)

Outline

O Characterization of irradiated Explorer-1 chips with ⁵⁵Fe

❷ 60 MeV e[−] test beam of irradiated Explorer-1 chips at Pohang

3 60 MeV e⁻ test beam of pALPIDEfs chips at Pohang

Introduction of Pohang Accelerator Lab

- Pohang Accelerator Laboratory (PAL) at Pohang (~ 2 hour drive from Pusan)
- Facilities
 - Light Source: 3 GeV electron Main LINAC + Strorage ring
 - Test LINAC
 - 60 MeV e⁻ beam
 - $\sim \mu$ s bunch, 33 ms bunch space
 - Designed current ~ mA, but can be tuned!

[PAL bird's-eye view]

[Test LINAC]

60 MeV e⁻ test beam of irradiated Explorer-1 chips

• 18 μ m epitaxial layer thickness, 1k Ω cm resistivity, -6 V reverse bias voltage.

- Cluster signal (MPV) decreases about 30% after 1×10^{13} irradiation and about 40% after 3×10^{13} irradiation.
- Cluster multiplicity also decrease substantially and dominant multiplicity is changed from 4 to 1 or 2.
- Difference between 1 and 3×10^{13} irradiation is relatively small (needs further study, see backup).

(** gain and cmc correction applied)

Comparsion of 20 μ m and 30 μ m pixel pitch

• 18 μ m epitaxial layer thickness, 1k Ω cm resistivity, -6 V reverse bias voltage.

• Irradiation effect on cluster signal size is more evident for 30 μ m pixel pitch: ~ 30% drop for 20 μ m and ~ 45% drop for 30 μ m in case of 1 \times 10¹³ irradiation level.

(** gain and cmc correction applied)

Outline

O Characterization of irradiated Explorer-1 chips with ⁵⁵Fe

❷ 60 MeV e[−] test beam of irradiated Explorer-1 chips at Pohang

3 60 MeV e⁻ test beam of pALPIDEfs chips at Pohang

Threshold catastrophe of pALPIDEfs on October

- Detector setup: 2 pALPIDEfs layers
- Maximum occupancy of each chip was limited to 400 hits per event.
- Due to very high beam intensity, possible threshold range for the measurement: $2000 \sim 2800$ electrons \rightarrow Very high threshold!

- No hit from noise for these thresholds.
- Therefore, very hard to see X and Y position correlation between two pALPIDEfs planes, but we still can see electrons who deposit large energy.

[Detector layout at beamline]

Basic plots

- Number of hits (or pixels) per event and cluster multiplicity decreases as a function of threshold.
- More than 200 hits with lowest threshold and we could expect more than 400 hits with one step lower threshold.
- Although we weren't able to measure with nominal threshold range to see correlations, pALPIDEfs chips behaved functionally under harsh condition.

Test beam on December

Main updates from October test beam:

- () Reduction of beam intensity dramatically \sim factor 50
- **2** 6 pALPIDEfs layers (4 pALPIDEfs layers are added) to reconstruct tracks.

[Detector layout at beamline]

[Before turn beam on]

Before plots from pALPIDEfs chips

- pALPIDEfs chip is mounted on the carrier board (PCB \sim 2mm thick)
- Large fraction of chip is overlaped with the carrier board (PCB) except long window.
 - ightarrow No material after 50 μ m thick chip itself

Hit map of 6 pALPIDEfs planes

[Layout]	
Layer 1	Layer 2
Layer 3	Layer 4
Layer 5	Layer 6

- Threshold settings ~ 150 electrons.
- Hit map of 1st layer is very uniform within each sector (4 sectors can be distinguished via vertical lines). Less hits at bottom caused by collimator.
- Electrons experience multiple-scattering or are absorbed by PCBs underneath pALPIDEfs chips.

KyungEon Choi*, Jongsik Eum, Jiyoung Kim, In-Kwon Yoo Characterization of ITS upgrade prototype chips at Pusan

X and Y correlations btw 1st and other pALPIDEfs planes

- Clear X position correlation between 1st and 2nd layers especially efficient middle 2 sectors.
- Y position correlation is basically visible and clear only hole area of carrier board.
- Correlations are getting faint as we correlate farther layers.

Characterization of ITS upgrade prototype chips at Pusan

X and Y correlations btw pALPIDEfs planes

KyungEon Choi*, Jongsik Eum, Jiyoung Kim, In-Kwon Yoo Characterization of ITS upgrade prototype chips at Pusan

18/19

Summary & Outlook

- There are many ongoing activities at Pusan for pixel chip characterization.
- Explorer-1:
 - Measurement of irradiated chips with ⁵⁵Fe is ongoing and many more analyses can be done.
 - Test beam data of irradiated chips will be further analyzed then write a documentation together with ⁵⁵Fe data.
- pALPIDEfs characterization:
 - We were able to tune the beam to reach enough low intensity for pALPIDEfs measurements.
 - Low energy electrons (60 MeV) scatter a lot at carrier boards (PCB).
 - Electrons pass through the holes in the carrier board look promising.
- Jongsik will be at CERN from January 19th to February 13th, 2015 for the detail analysis of pALPIDEfs data based on Eutelescope.

Backup

ALPIDE prototypes (CERN)

- Explorer: analog output, pixel sensor optimization diode geometry, epitaxial layer thickness, back bias, etc.
- Ø pALPIDEss: binary output, circuit optimization
- **8** pALPIDEfs: binary output, full scale prototype for system studies
- Investigator: analog output, pixel sensor optimization pixel size, input transistor location, etc.

Characterization of irradiated Explorer-1 chips with ⁵⁵Fe

• 18 μ m epitaxial layer thickness, 1k Ω cm resistivity, -6 V reverse bias voltage.

Characterization of ITS upgrade prototype chips at Pusan

Deformation of seed distribution after irradiation

60 MeV e⁻ test beam of irradiated Explorer-1 chips

• 18 μ m epitaxial layer thickness, 1k Ω cm resistivity, -6 V reverse bias voltage.

Naive estimation of beam intensity via Explorer-1

- Assume Explorer-1 is fully efficient at back bias = -6V.
- Average number of clusters in Explorer-1 \sim 60 clusters (or electrons).
- Active area of pALPIDEfs/Explorer-1 ~ 20.
- \sim 1800 electrons on pALPIDEfs if beam is uniform.
- \sim 2700 hits (or pixels) on pALPIDEfs (if, cluster multiplicity = 1.5)
- pALPIDEfs cannot measure all these particles, moreover we cannot have clean reconstructed tracks from 2700 hits.

Noise occupancy

Threshold extraction

Threshold vs. ITHR

Some useful information from Explorer-1

- Cluster signal of Explorer-1 (20x20 μ m² pixel, 2 μ m octogonal n-well and STI) at back bias voltage = -6V from 60 MeV electron.
- Calibrated with ^{55}Fe source \rightarrow x-axis in electrons.
- Small fraction (\sim 9 %) of electrons deposit enough energy to generate more than 2000 electrons.
- Therefore, very hard to see X and Y position correlation between two pALPIDEfs planes, but we still can see electrons with large energy deposit.
- No X and Y position correlation between two planes means we cannot reconstruct track!

Basic plot of DUT on December

[Number of hits per event vs. threshold]

Hits vs. Plane

