

Sensor production and test at TMEC

Jirawat Prabket

Thai Microelectronics Center (TMEC)

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan Haeundae Grand Hotel, Pusan, South Korea, Dec 15-16, 2014

Outline

- **TMEC's Overview**
- Our participates in the ITS upgrade
- □ Incoming wafer QA: status & results
- **Summary**

Outline

TMEC's Overview

Our participates in the ITS upgrade Incoming wafer QA: status & results Summary

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014

Integrate Ideas Into Reality 3

TMEC is ready

Our main office and facility is located in Chachoengsao province, approximately 70 km east of Bangkok.

- 1,000 sq. m. (10,764 sq. ft.) of class 100 and 10,000 cleanroom space with additional support area.
- 6" Wafer production line
- 500 wafer starts per month capacity

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality

Bestmed by N. Phonenhearthanth

TMEC process line

5

CMOS process line is the heart of TMEC work.

TMEC R&D services

Outline

TMEC's Overview Our participates in the ITS upgrade Incoming wafer QA: status & results Summary

Ath ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014

Integrate Ideas Into Reality 7

Our participates in the ITS upgrade

□ Incoming wafers QA: 4 point ,SEM, SRP measurement Silicon Micro-channel cooling : ongoing new design □ Thinning and laser dicing : coordinating with **STARS** Microelectronics

NECTEC¹ 4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan Integrate Ideas Into Realit

Outline

TMEC's Overview
Our participates in the ITS upgrade
Incoming wafer QA: status & results
Summary

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014

Integrate Ideas Into Reality 9

Incoming wafer QA: status & results //TMEC

QA activities with TMEC on sample basis:
4 point measurement : High resistivity sample
SEM cross-section inspection: epi layer & wafer thickness
SRP measurement of resistivity profile in the epi layer

Designed by N. Phonophanchanthra

4 point measurement

Sample preparation : HF dip + DI rinse + N_2 dry

Samples :

- **TMEC STD wafer** : CZ N-type [111] ; 1510±22 Ohm
- □ High resistivity reference wafer : 5 type

TMEC STD : CZ N-type [111] 1510±22 Ohm

	Substrate			Calibrated values (Mean)				
Wafer Mfg.	Orientation	Diameter [mm]	Туре	Thickness [um]	Rs [Ohm]	Rho [Ohm.cm]		
Topsil	<111>	76.1	N	510±3	1510±22	77±1.2		

Measured values

Pre HF dip

0 min(after HF dip)

5 min

10 min

20 min NECTEC¹ 4th ALICE IIS upgrade, MFT and O² Astan Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality 12

TMEC STD : CZ N-type [111] 1510±22 Ohm

	Substrate			Calibrated values (Mean)				
Wafer Mfg.	Orientation	Diameter [mm]	Туре	Thickness [um]	Rs [Ohm]	Rho [Ohm.cm]		
Topsil	<111>	76.1	N	510±3	1510±22	77±1.2		

Measured values

FZ p-type [100], 4,500 -4,700 Ohm.cm

Measured values		Time [Min]										
		0	5	15	20	30	35	60	80	960		
Sheet	Mean	102,360	100,889	100,494	102,792	106,790	111,563	121,513	137,000	272,000		
resistance	Min	139,000	131,000	135,000	133,000	141,000	144,000	151,000	172,000	326,000		
[Ohm/Sq]	Max	79,700	80,500	79,700	81,500	85,500	87,100	98,300	109,000	218,000		

Measured values

Bestaned by N. Phonaphanchanthr

14

FZ p-type [100], 4,500 -4,700 Ohm.cm

Measured values			Time [Min]										
		After dip	5	15	20	30	35	60	80	960			
Sheet	Mean	102,360	100,889	100,494	102,792	106,790	111,563	121,513	137,000	272,000			
resistance	Min	139,000	131,000	135,000	133,000	141,000	144,000	151,000	172,000	326,000			
[Ohm/Sq]	Max	79,700	80,500	79,700	81,500	85,500	87,100	98,300	109,000	218,000			

Measured values

High resistivity reference wafer : 5 type

Bulk resistivity measurement results

	Туре		FZ (N-type)	FZ (N-type)]	FZ (P-type	pe)		FZ (P-type)		FZ (P-type)		
	Orientation		[100]			[111]			[100] [100]				[111]		
Wafer Spec.	Resistivity [Ohm.cm]		5,000-10,000		3,000-5,000		4	,500-4,70)	5,000-8,500)	8,000-10,000		
	Thickness [um]		380		525			300		350			380		
	Size	4"		4"			2 "			pices		pic	es		
Sheet Resistance (Bs)	Maximum		131,578.95			57,142.86		150,000.00 14			142,857.14	l.	210,5	26.32	
calculated(Cal) [Ohm/Sq]	Minimum	263,157.89		95,238.10			156,666.67	7	242,857.14			263,157.89			
	Meas.	49 Point		49 Point			29 Point			49 Point		49 P	oint		
	Condition	#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2	#3	#1	#2
	Minimum	46,630	44,830	45,590	55,470	55,050	57,560	96,110	95,580	96,880	271,500	282,900	289,800	128,700	130,900
Rs measured	Mean	49,250	49,470	50,270	72,600	73,820	74,870	98,620	99,670	100,600	300,600	313,900	319,400	155,700	144,700
[Onn od]	Maximum	55,340	55,030	54,890	85,790	87,670	91,340	102,300	103,300	104,300	330,100	341,900	354,100	340,500	165,200
	% STD	4.138	4.299	4.093	9.49	8.602	7.985	1.58	2.06	1.923	5.426	5.017	5.219	28.53	5.683
	Sort Sigma	3	3	3	3	3	3	3	3	3	3	3	3	3	3
Bulk	Minimum	1,771.94	1,703.54	1,732.42	2,912.18	2,890.13	3,021.90	2,883.30	2,867.40	2,906.40	9,502.50	9,901.50	10,143.00	4,890.60	4,974.20
resistivity(Rho) Cal. from Rs [Ohm.cm]	Mean	1,871.50	1,879.86	1,910.26	3,811.50	3,875.55	3,930.68	2,958.60	2,990.10	3,018.00	10,521.00	10,986.50	11,179.00	5,916.60	5,498.60
	Maximum	2,102.92	2,091.14	2,085.82	4,503.98	4,602.68	4,795.35	3,069.00	3,099.00	3,129.00	11,553.50	11,966.50	12,393.50	12,939.00	6,277.60

NEC.

TEC

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality

16

XSEM & SRP Measurement

Samples :
8" epi wafer : 20 & 40 um epi thickness
ITS1 Run : W4, W5, W14, W8, W9, W20, W15, IPHC 1&2

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014

Integrate Ideas Into Reality 17

XSEM & SRP Result : 8" epi wafer

XSEM : thickness

20 um epi layer , average epi resistivity 6.284 kohm.cm

40 um epi layer, average epi resistivity 7.479 kohm.cm

Epi layer thickness : 18.71 um

Epi layer thickness : 40.74 um

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality

Tate Ideas Into Reality 10

XSEM & SRP Result : 8" epi wafer

SRP : depth profiler

20 um epi layer , average epi resistivity 6.284 kohm.cm

40 um epi layer, average epi resistivity 7.479 kohm.cm

XSEM & SRP Result : 8" epi wafer

Summary of XSEM & SRP Measurement result

		Measured				
No.	Manufacturer s' data	XSEM	S	SRP		
		Epi thickness (um)	Resistivity (kΩ· cm)	Epi thickness (um)		
1	20 um epi layer , average epi resistivity 6.284 kohm.cm	18.71	> 6	~ 19		
2	40 um epi layer, average epi resistivity 7.479 kohm.cm	40.74	> 3 ~ 10	~ 40		

NECTEC⁷ 4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan Integrate Ideas Into Reality 15/12/2014

XSEM & SRP Result

ALICE ITS1 Dies

Gesigned by N. Phongphanchanthra

XSEM & SRP Result : ITS1 Run

No.1 W4: 18 um epi layer, >1kOhmcm, 450 um thick

XSEM : thickness

SRP : depth profile

Epi layer thickness : 18.04 um

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality

22

Epi layer thickness \approx **19 um**

XSEM & SRP Result : ITS1 Run

Summary of XSEM & SRP measurement result

		Measured				
Dies	Manufacturer s' data	XSEM	SRP			
No.		Epi thickness (um)	Resistivity (kΩ· cm)	Epi thickness (um)		
1	W4: 18 um epi layer, >1kOhmcm, 450 um thick	18.04	>1	~ 19		
2	W5: 18 um epi layer, >1kOhmcm, 50 um thick	17.96	>1	~ 17		
3	W14: 20 um epi layer, >1kOhmcm, 450 um thick	18.87	>1	~ 17		
4	W8: 30 um epi layer, >1kOhmcm, 450 um thick	29.46	>1	~ 28		
5	W9: 30 um epi layer, >1kOhmcm, 50 um thick	31.34				
6	W20: 40 um epi layer, >1kOhmcm, 70 um thick	40.47		- Ongoing		
7	W15: 20 um epi layer, >1kOhmcm, 50 um thick	20.04				
8	IPHC 1 : 18 um epi layer, >1 kOhmcm	16.86	>1	17		
9	IPHC 2: 18 um epi layer, >1 kOhmcm	18.05	>1	17		

NECTEC⁷ 4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality

23

Summary

TMEC's Overview
Our participates in the ITS upgrade
Incoming wafer QA: status & results
Summary

4th ALICE ITS upgrade, MFT and O2 Asian Workshop 2014 @ Pusan15/12/2014Integrate

Integrate Ideas Into Reality 24

Summary

We have joined the ITS upgrade :

- □ Incoming wafers QC for 4 point ,SEM, SRP measurement ,
- Silicon Micro-channel cooling
- □ Thinning and laser dicing

Summary

4 Point measurement : Due to very low substrate doping concentration the probe tips are most probably not forming an Ohmic contact during these measurements and causing erroneous results
 SRP & XSEM : Most of the tests were performed on the chips with an epitaxial layer with a thickness of ~ 18µm and a resistivity of > 1kΩ·cm

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan 15/12/2014 Integrate Ideas Into Reality 2

http://tmec.nectec.or.th NECTEC^N dynu

a member of NSTDA

Spare slide

Integrate Ideas Into Reality 27

Jesigned by N. Phongphanchanthra

8" epi wafer : 20 & 40 um epi thickness

Bulk resistivity measurement

	Туре	8" 1	wafer with 40	um epi thick	mess	8" wafer with 20 um epi thickness			
Wafer spec.	Resistivity [Ohm.cm]	7,479 (Avg.), 9,801(Max.), 5,156(Min)				6,284(Avg.), 7,411(Max.),5,156 (Min.)			
	Meas.		49 P	oint			49 P	oint	
	Condition	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Sheet Resistance (Rs) measured	Mean	63,479	65,835	60,483	82,033	83,309	75,639	65,261	98,304
[Ohm/Sq]	Minimum	54,630	57,420	53,360	75,100	73,690	60,870	59,540	82,240
	Maximum	69,930	78,240	66,590	92,980	101,000	98,880	70,770	119,200
	% STD	5.563	8.211	4.81	4.865	8.905	12.546	4.126	8.944
	Mean	4,856.14	5,036.38	4,626.95	6,275.52	6,206.52	5,635.11	4,861.94	7,323.65
Bulk resistivity(ρ) Cal. from Ks	Minimum	4,179.20	4,392.63	4,082.04	5,745.15	5,489.91	4,534.82	4,435.73	6,126.88
$[Onm.cm] (p = Rs \ l)$	Maximum	5,349.65	5,985.36	5,094.14	7,112.97	7,524.50	7,366.56	5,272.37	8,880.40

HIGH-RESISTIVITY SILICON(HRS) MEASUREMENT *

The challenges of resistivity measurement techniques for HRS : It is very difficult to accurately and consistently measure the resistivity of HRS wafers using the standard method:

- Four-Point Probe (4PP) measurement : The instrument indicated that contacts are no longer Ohmic, they show mostly Schottky type behavior and we believe that plays a role in the inaccurate measurement.
- Hall Effect Measurement : The current-voltage plots were not Ohmic, the Hall coefficients did not match and the results were not repeatable.

* Source : Pinakpani Nayak, "Characterization of High-Resistivity Silicon Bulk and Silicon-on-Insulator Wafers", PhD Thesis, ARIZONA STATE UNIVERSITY, p. 170-185, 2012.

HIGH-RESISTIVITY SILICON(HRS) MEASUREMENT *

Table 6.4 Summary of resistivity measured by different methods for a bulk

silicon sample with 1000 Ω .cm manufacturer specified resistivity.

	Resistivity (Ω .cm) (Manufacturer Value $\approx 1000 \ \Omega$.cm)										
Method ⇒	Four- Point Probe	Hall (Silver Paste Contact)	Hall (Gold Contact)	Hall (Indium Contact)	C-V Doping Profile	C-V Extrac tion					
Resistiv ity	6.5k ^a , 5.7k ^b , 50k ^c	Undeter mined	755	2.69k	133	220					
Average Doping	NA	Undeter mined	9.1x10 ¹²	7.22×10^{12}	10 ¹⁴	NA					

^a polished surface, ^b unpolished surface, and ^c unpolished surface after annealing

"Due to very low substrate doping concentration the probe tips are most probably not forming an Ohmic contact during these measurements and causing erroneous results. It is believed that the contact resistance and the types of contact, Ohmic or Schottky, play a significant role in the observed measurement anomalies. The strategy is to understand the nature of contacts during standard four-point probe or Hall techniques and find a way to either avoid the contact problem or take into account the contact resistances and separate them from the final measurement to get the actual substrate resistance."

Source: Pinakpani Nayak, Characterization of High-Resistivity Silicon Bulk and Silicon-on-Insulator Wafers, PhD Thesis, ARIZONA STATE UNIVERSITY, p. 170-185, 2012.

Stain etching

The channel length *L* was obtained from measurements of the pillar heights using crosssectional scanning electron microscope (SEM) and measurements of the junction depths by stain etching in a HF : HNO3 : CH3COOH, 1:3:8 for 5-10 s

SEM cross section of a 120-nm v-MOSFET after silicide formation (a) without any etch and (b) after stain etching

***Source :** M. M. A. Hakim, "Self-Aligned Silicidation of Surround Gate Vertical MOSFETs for Low Cost RF Applications", IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 57, NO. 12, DECEMBER 2010.

Stain etching : dip time

dD

Sample preparation

XSEM : Cross-sectional scanning electron microscope (XSEM) measurements of the epi layer & wafer thickness by stain etching in a HF : HNO_3 : CH_3COOH , 1:3:8 for 10 s

after stain etching 10 s

Integrate Ideas Into Reality

33

Sample preparation

SRP:

Bevel-cut sample

Grinding

Spreading-resistance measuring : SR-210 model

NECTEC⁷ 4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan Integrate Ideas Into Reality 15/12/2014

34