A Large Ion Collider Experiment

Module Construction

Pusan, 15 December 2014

V. Manzari – INFN-Bari & CERN

4th ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan

η coverage: |η| ≤ 1.22for tracks from 90% most luminous region

700 krad/ $1x10^{13}$ 1 MeV n_{eq} includes safety factor 10

Outer Barrel

Outer Barrel (OB): 2 ML + 2 OL

Radial position (mm): 196, 245, 344, 393

- Length in z (mm): 843, 1475
- Nr. of staves: 24, 30, 42, 48
- Nr. of half-staves/stave: 2
- Nr. of modules/half-stave: 4 (ML), 7 (OL)
- Nr. of chips/module: 14
- Nr. of chips/layer: 2688, 3360, 8232, 9408
- Material thickness: ~ 1% X_0 per layer

Outer Barrel: full-scale prototypes of the mechanical structures

Inner Barrel: full-scale prototypes of the mechanical structures

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan –15 Dec '14

OB Module Components

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan –15 Dec '14

Bari (delivery end of Jan '15)

OB Module development - planning and milestones

Activity	2015															2016															
	Jan	Fe	o Mar		Apr		M	May		Jun		Jul		Aug		Sep		Oct		Nov		Dec		Jan		Feb		Mar		Apr	
ALPIDE-2 Module																															
FPC Design and Production																															
Module Production																															
Module Characterization																															
ALPIDE-3 Module																															
FPC Design and Production																															
Module Production																															
Module Characterization																															
Final Module																															
FPC Design and Production																															
Module Production																															
Module Characterization																															

Module Assembly Procedure

Main steps of the Module Assembly Procedure

1. Chip visual inspection - dimensions, warp, integrity, cleanness

- 2. Chip alignment pick up from the chip pallet and place above a vacuum chuck in nominal position with respect to reference markers
 - 14 chips one after the other
 - use reference markers on chip surface and vacuum chuck
 - gap between adjacent chips:
 - $100 \ \mu m$ between nominal edge
 - 200 µm between center of cross reference markers

Module Assembly Procedure

- **3. FPC alignment** placement above the chips arrays in nominal position by mean of a jig embedding a soldering grid
 - use locating pinholes and ruby spheres
 - the soldering grid is a ceramic plate with 0.5 mm holes corresponding to the FPC vias
 - the jig gently press the FPC against the pixel chips to minimize the gap in between
- 4. Soldering balls placement fill the soldering grid holes with the soldering balls by mean of the balls transfer tool
 - the grid guides the soldering balls into the FPC vias
 - one chip at a time, use pinholes for alignment
 - visual inspection to ensure each hole is filled with one and only one soldering ball

Module Assembly Procedure

5. Soldering readiness - install the vacuum tight lid equipped with the quartz window above the pixel chips, FPC and soldering grid

stack-up

- start vacuum pump to empty the soldering volume till ready for laser soldering
- pressure of the chip vacuum chuck always smaller than soldering volume

- 6. Laser soldering shoot laser trough the quartz window onto each soldering balls in sequence to melt them and establish the connection between FPC and pixel chip
 - Visual checks of soldering joints

OB Module Assembly

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan -15 Dec '14

Half-Stave and Stave Assembly

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan -15 Dec '14

ALICE

Summary Table of OB Modules and Staves

Layer	Stave	Half-stave	Module	Chip				
L3	24	48	192	2688				
L4	30	60	240	3360				
L5	42	84	588	8232				
L6	48	96	672	9408				
Spares (20%)	11 18	22 36	88 252	1232 3528				
Total	65 108	130 216	2032	28448				
Power Bus Module: Flexible Printed Circuit 2x7 Pixel Chips Cold Plate Cold Plate Cold Plate Cold Plate Grace Trane Grace Trane Half-Stave Left Half-Stave Right								

 \backslash /

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan -15 Dec '14

OB Module Construction - Organization

Module production will be distributed among up to 6 production centers: Bari (Italy), CERN, Liverpool (UK), Pusan (South Korea), Strasbourg (France), Wuhan (China)

- Each production center will deploy an identical automatic assembly systems to ensures an homogeneous quality over the whole production
 - Procurement of the automatic assembly systems is centrally managed by the project with a tendering launched from CERN

Details in the next talk by Antonello

CERNY	European Organization for Nuclear Research Organisation européenne pour la recherche nucléaire
	IT-4029/PH/ALICE
The ALICE II	TS Upgrade Project
	Invitation to Tender
	Technical Specification
Supply o	f automatic assembly systems for the Hybrid Integrated Circuits of the ALICE ITS and MFT upgrade projects
T SS M T an cc d d SS D	Abstract his technical specification concerns the supply of automatic assembly stems for the so-called Hybrid Integrated Circuits of the ALICE ITS and IFT upgrade projects. he systems shall allow large surface silicon dies pick and placement, with a accuracy of $\pm 5 \ \mu m$ at $3\sigma_c$ by an operator using stages controlled by a nsole and vision system assistance. In addition, interconnection of silicon es and flexible printed circuit shall be performed automatically by laser idering of 200 µm soldering balls. eliveries are foreseen over 1.5 years from placement of the contract.
	October 2014

OB Module Test and Shipment

Tasks at the Module Construction Center after the assembly

- Chips position measurements of chips position in the module with respect to reference markers, which will remain visible throughout the following construction and integration operations
- 2. Module characterization functional validation of modules according to a defined protocol
 - Test System developed by Bari group
- **3. Module transport** shipment of qualified modules to the Stave Construction Centers
 - Liverpool, LBNL, Turin and LNF, NIKHEF

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan -15 Dec '14

Infrastructure and Equipment @ Construction Centers

- ✓ ~40 m² of a clean room class 100000
- ✓ Compressed air and nitrogen supplies
- ✓ Automatic assembly system
- Optical microscope for visual inspections, equipped with image acquisition system
- Test bench equipped with readout and control test system, cooling system and power supply systems
- ✓ Radioactive source (typically ⁹⁰Sr, activity ~10MBq)

✓ Storage cabinets (antistatic, desiccator) for components and assembled modules

Timescale

	2015			2016				2017				
	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Laboratory setting up												
Automatic Assembly System: Procurement, Installation and Commissioning												
Training (@ CERN and Bari/Italy)												
Manual assembly and Laser soldering												
Automatic assembly system												
Test System												
Module Production												

Expected delivery date and commissioning of the first prototype of the automatic assembly system

OB Construction flow-diagram

V. Manzari - ALICE ITS upgrade, MFT and O² Asian Workshop 2014 @ Pusan –15 Dec '14

Conclusions

- The manual assembly procedure for the OB (and IB) module is well advanced and the optimization is in progress
- This procedure will be implemented in the Automatic Assembly System, whose supply is object of a tendering, to ensure reproducible quality Some operations will be controlled or automatized
- The production of the OB modules will be shared between 6 laboratories Bari (Italy), CERN, Liverpool (UK), Pusan (South Korea), Strasbourg (France), Wuhan (China)
- Setting up of the infrastructures and training next year
- Start Module production mid 2016

Stave and Module construction are discussed in the WP6/7/8 meetings: Thursday 16h:00 – 18h:00 (Geneva time) – dates for 2015 will be circulated soon