1. Project status

- Questions
 - Pierre to check why Korea University missing in the list of institutes
 - Responsibilities
 - Total project cost

1. Dataflow - General 20' (Iosif-Charles Legrand)

- Topologies studies:
 - Normal structure FLPs-EPNs
 - o Super-EPNs
 - Local switches
 - Sw must be topology dependent
- Simulation of IO processes
 - Omnet++: packet/frame level simulation. Lon
 - Monarc simulation
 - Network topologies
 - \circ Size and scalability
 - o Prize
 - Transport layer: UDP, TCP, RDMA
- High speed network
 - o 40 GbE requires special tuning
- Calibration data traffic
- Q
- How to conclude on FLP-EPN ?
- **TBD:**
 - CPU needed for the data transport depending on the network technology (RDMA vs EPN).
 - More simulations:
 - Scheme with intermediate switches: simulate the impact of the data distribution. Review the relation between the network topology and the data distribution sw.
 - FLP buffering
 - Cost studies

2. Dataflow - Dataflow simulation (Rifki Sadikin)

- Simulation setup in LIPI
 - Network simulation
 - o Simulation time too long: 1 hour for 4 FLPs and 4 EPNs
 - Need to reduce simulation time. Maybe not full TCP/IP? Verify the simulation results with prototype measurements.
 - Implement it with the ALFA benchmark.
 - **Other options:**
 - Run the simulation on a faster node
 - use slower network and extrapolate the results
- Storage simulation
 - Ready for new simulation ? Yes.
 - Detector input ? Include detector data in the simulation framework ?

- Definition of the links stave-CRU and CRU-O2 based on a system-C simulation. (Input of Adam and possible collaboration with him). Based on MC data or real data.
- Realistic system simulation would require to include the CTP: busy signal, latency, congestion situations, back-pressure.

3. Computing Platforms - GPU Computing platforms (Joohyung SUN)

- Benchmarking Kepler and Maxwell GPUs
- Using the online event reconstruction
- Kepler: 32 work queues fully scheduled independently
- Work in progress
 - Previous work ~1
- New work
 - Using Hyper-Q
 - Tesla K20c has only 2 copy engines
 - Outlook: Maxwell GPU
- Measurements in conditions comparable as previous work
- Maxwell already ordered
- Pierre to give previous results

4. Computing Platforms - Computing Platform Benchmarking (Boonyarit Changaival)

- Platforms benchmarking for ITS cluster finder hardware and software
- GPU, MIC, APU
- ITS cluster finder:
 - GPU ~OM(100) Hz. Not appropriate for this application.

5. Computing Platforms - Opportunistic use of CPU cycles from mobile devices (Tiranee ACHALAKUL)

- White Rabbit
- Application to get CPU cycles and make PR for Android devices
- Number of donators for other large scientific projects ?
- Provide more precise parameters about the TOF calibration.

6. Computing Platforms - Data processing on the Grid (KISTI)

- No presentations

7. Control - Status and plans for the Control, Configuration and Monitoring (Vasco Chibante Barroso)

- Presentation of the current system and the O2 CCM
- Control
 - Possibly with Petri-net
 - KMUTT: investigation on the tools
 - CERN: investigation for the TDR
- Configuration

- o System
- Application

8. Control - Control and Configuration and Monitoring (Khanasin YAMNUAL)

- Test of tools for
 - o Control
 - Configuration
 - Monitoring

9. Calibration and reconstruction - Plans for the TPC reconstruction (LIPI)

- Modelling the space charge in the TPC volume
- What is the input ?
 - Geometry cannot be the only input for Run 3.
 - Time is an essential ingredient.
 - Complex and critical issue for the ALICE upgrade. Consider the work done before for the Space distortion during Run 1.

10. Tools and software process - Tools and Procedure (Vasco Chibante Barroso (CERN))

- Summary of tools and procedure selected by CWG2
- Coding guidelines

11. Tools and software process - Continuous testing tool (LIPI)

- Test with Jenkins.

12. Architecture and Hardware – Storage systems (P. Vande Vyvre)

13. DCS general overview (Peter Chochula)

- How different will be the system after the upgrade?
 - DDL3 to transfer the data
 - DCS data to O2 updated every 100 ms. Strategy: read all conditions and store them in a memory block. Update only values which changed. Inject them in the physics data.
 - DCS data transfer to O2 ? Media ?
- Interest by the Technical University and Academy of Sciences to participate to the ITS project.

14. General discussion and O2 workshop wrap-up

- O2 issues

- ITS needs from O2 ?
- Readout of a half layer Q1 '17 : O2 sw + 1 CRU + 1 FLP
- 6 months of commissioning on the surface of the full detector Q4 '18-Q1 '19
 - Cooling system and power supplies will be available
 - Would need 250 RU.
 - Minimum need half layer corresponding to 24 staves i.e. ~100 copper data links multiplexed to (TBD by ITS). The full system requires 10-20 CRUs and FLPs.
 - \circ $\,$ Test of a fraction of a detector needed because no time after installation.
 - Hall 167
- -
- ITS needs from DCS ?
 - Plan being established: list of parameters, interface .
 - Test of inner-barrel test prototype will be launched with all the DCS services.
 - TBD: definition of the data format and e.g. inclusion of the time. Last limit summer '15.
 - DCS team will take care of integrating the devices in the DCS sw framework.