

THE ALICE DETECTOR CONTROL SYSTEM

4th ALICE ITS, MFT and O2 Asian Workshop. Pusan, December 2014

The Detector Control System

- Responsible for safe and reliable operation of the experiment
 - Designed to operate autonomously
 - Wherever possible, based on industrial standards and components
 - Built in collaboration with ALICE institutes and CERN JCOP
 - Operated by a single operator

THE ALICE DCS ARCHITECTURE

The DCS context and scale

The DCS data flow

DCS Architecture

THE DCS CONTROLS LAYER

Vertical DCS slice

• An autonomous distributed system is created for each detector

DIST

Control

DIST

Data

Drive

UI

Driver Driver

- Central systems connect to all detector systems
- ALICE controls layer is built as a distributed system consisting of autonomous distributed systems

'illegal' connection

- To avoid inter-system dependencies, connections between detectors are not permitted
- Central systems collect required information and redistribute them to other systems
 - New parameters added on request
- System cross connections are monitored and anomalies are addressed

Worker nodes

o. C Dell

1 2 2

- Central DCS cluster consists of ~170 servers
 - Managed by central team
 - Worker nodes for WINCC OA and Frontend services
 - ORACLE database
 - Storage
 - IT infrastructure

DCS can operated in isolated mode

DCS serves as a communication exchange point: Outbound..... Trusted DAO Technical Public fileserver **Trusted DIM** network consumers WWW (LHC) server **ALICE DAQ** Trusted DIP consumers Public DCS fileserver DIM/DIP servers **Private GPN** fileserver Exposed gatewav **DCS Worker** Nodes Trusted -----OFFLINE WWW server generator AL **DCS** Network DCS Database HLT File exchange Trusted HLT **DB** access server gateway server

... and inbound

THE DCS FIELD LAYER THE POWER OF STANDARDIZATION

DCS Architecture

- Wherever possible, standardized components are used
 - Commercial products
 - CERN-made devices

- Missing standard for custom devices
 - OPC to heavy to be developed and maintained by institutes
 - Frontend drivers often scattered across hundreds of embedded computers (Arm Linux)

Generic FED architecture

ALICE Silicon Pixel Detector (SPD)

- 2 layers
 - 2.5 and 7 cm away from beam
- 10 000 000 pixels bump-bonded to 1200 readout chips
- Power dissipation 1.3kW
 - Total thickness of pixel assembly (200+150)µm
 - 1°C/s increase in case of cooling failure
 - Less than 1min contingency!
- Reliable frontend control is essential!

SPD FED Implementation

ALICE Transition Radiation Detector (TRD)

- > 500 drift chambers, 760 m²
- •28 m³ Xe based gas mixture
- 1.2M electronics channels
 - •65000 MCM
 - 250 000 tracklet processors
 - 17TB/s raw data

89 LV Power supplies
~65 kW heat

DCS control board (~750 used in ALICE)

Readout boards

TRD FED Implementation

THE DCS OPERATION LAYER

ALICE central FSM hierarchy

THE DCS USER INTERFACE LAYER

DCS Architecture

A set of intuitive panels and embedded procedures

replaced the direct FSM operation

DOWNLOADING

DOWNLOADING

CONFIGURE(run_mode)

GO_STBY_CONF GO_BEAM_TUN EOR(run_type,run_no) SOR(run_type,run_no) ACK_RUN_FAILURE

RUN INHIBIT

RUN_ALLOW

EOR(run_type,run_no) ACK_RUN_FAILURE

READY

CALIBRATING

CALIBRATING

The ALICE Run Control Center (ARC)

DCS and O2 project

- The overall DCS architecture will not significantly change for RUN3
 - Flexible design allows for implementation of new requirements
 - Distributed system provides enough flexibility and is scalable

Major modifications:

- DDL3 will be used to carry DCS data between the DCS and detector readout electronics
- DCS conditions need to be published to O2 continuously (present shuttle mechanism cannot be used)

DAQ+DCS proposal of sharing DDL3

The same physical link will be shared between the 2 data traffics:

- 99% PHYSICS data
- **1% or less, DCS monitoring data**

The same infrastructure can be used to send configuration data from DCS to readout electronics

DAQ+DCS DDL3 sharing proof of concept. Example stripped DCS data from DAQ stream and injected it into WINCC OA system

Module Panel Scale Help		DAQ_TEST	0.0
VOLTAGE 1	TEMPERATURE 1	LDC status	s display 👘
		LDC name host	aloneldc pcaldref21
0 88 11:28:00 AM 11:28:40 AM 11:29:20	₀ ¹ <u>→</u> 11:27:00 AM 11:29:00 AM	Current Trigger rate	13929.667
VOLTAGE 2	TEMPERATURE 2	Average Trigger rate	19553.379
		Number of sub-events	404911372
		Sub-event rate	13929
	0 11:28:00 AM 11:29:00 AM 11:30:00	Sub-events recorded	404911366
	IEMPERATURE 3	Sub-event recorded rate	13929
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bytes injected	5444462221744
		Byte injected rate	1.227 GB/s
17 11:28:20 AM 11:29:20 AM		Bytes recorded	5444461516944
~10 MB/s	~1000 MB/s	Byte recorded rate	1.227 GB/s
		w/o HLT decision	0
		mem allocation failed	0
		average time bmAllocate	

How to get the DCS Data to 02?

- O2 requires a block of DCS conditions to be updated every 100ms
 - DCS readout is in average much slower
 - Most condition parameters change at much slower rates

Strategy:

- read all conditions and store them in a memory block
 Update only values which changed
- DCS Data Collector will find data in the distributed system and keep updating the process image

Hardware Architecture – DCS will interface to O2 in standard way

Depending on requirements, DCS data can be collected at various stages of processing

The DCS data collector

Data Collector performance

- O2 expects about 100 000 conditions parameters to be handled by the data collector
 - The parameters are distributed across ~100 systems
- Present tests suggest, that a manager hooked on the EM will handle the data with sufficient margin
 - DIM seems to be a good choice for the transfer protocol

Fast-changing parameters

- Most of conditions change slowly during the run
- Certain values (like current spikes) could be too fast for standard processing
 - These are not even spotted by the power supplies due to internal readout latency
- Fast changes with importance for reconstruction will be detected by auxiliary devices and transmitted directly to the data collector
 - Current example: fast TPC chamber currents monitoring based on PLC

The DCS data collector

The DCS data collector

DCS-O2 interface status

- Realistic data simulator contains now ~75 000 values
 - Real replica of RUN2 conditions data
 - For each parameter a realistic value with typical update frequency and fluctuation is simulated
- First prototype of data collector plugin is being developed and evaluated
- Fast values readout based on PLC being installed for ALICE TPC

DCS-ITS Workshop Kosice (Slovakia)

Workshop organized by ALICE DCS team in Kosice 25-26 November 2014 Participation:

- 12 colleagues from Technical University of Kosice and Slovak Academy of Sciences (Institute of Experimental Physics)
- 4 colleagues from CERN

Topics covered:

- General DCS overview
- Computing organization and rules
- WINCC OA and JCOP framework (presentation and hands-on sessions)
- DCS architecture for ALICE SSD, SDD and SPD
- DCS requirements for new ITS
- DCS and the O2 project
- DCS OFFLINE interfaces (review of tools developed at the Technical University)

Workshop outcome

- As a result of the workshop, the joint team of the Technical University and Academy of Sciences expressed its interest in participation in the DCS project for the new ALICE ITS
- The Slovak team is proposing to take the responsibility for all software components of the new ITS controls system
- The Central DCS team of ALICE welcomes this initiative and is happy to provide guidance and support for the new developments
 - Short term plan setup a DCS for the tests of new modules
 - Developed components will be used as prototypes for the new DCS and will be released as an ALICE framework to other detectors

Conclusions

None. Work is in progress