A Large Ion Collider Experiment

O² Project : Data Storage

4th ALICE ITS, MFT and O2 Asian workshop Pusan, South Korea, 15-16 December 2014

P. Vande Vvvre / CERN-PH

Data Storage

Environment and characteristics

ALICE O2 workshop in Busan | December 16th 2014 | Pierre Winde Vyvre

Data Storage Requirements

	Clients	Total Bandw.	Usage	Storage Unit	Number of Units	Total Capacity
	123456	123456	123456	123456	123456	123456
Compressed Physics Data	EPN OM(1000)	100 GB/s 50 GB/s	Wr once Synch. Sust. Seq. Rd several Asynch Inside O2 & outside	Files of several GB	1.0E+09 files	100 PB
Condition & Calibration Database	FLP+EPN OM(1000)	A few GB/s max	Sust. Direct access Internal	Records of a few kB		A few tens of TB

Data Storage for compressed physics data Possible solutions

- Solution used in Run1-2 DAQ system (Clustered file system mounted on all EPNs): possible but expensive
- Local storage on each node: possible but not practical
- Commercial or open clustered file system (e.g. Lustre) with gateways
- Key/value store (e.g. F4 Facebook)
- CERN disk-based storage system (EOS)

Data Storage for compressed physics data General architecture

- Bandwidth from each EPN is low and does
 not justify high speed link to the data storage
- Introduce a few high performance nodes:
 - Gateway (GW) for local data writing/reading
 - Data mover (DM) for data exchange with the outside

EPN

Data Storage for compressed physics data EOS : Virtual storage cloud

- EOS is the CERN disk-only file storage
- Several instances: CERN, FNAL, SASKE, Subatech, SINICA, RRC Kurchatov, UNAM
- 25.000 disks 60 PB storage space 200 Mio files
- Service since 2012 1-year availability including scheduled downtimes 99.5% at CERN.
- Virtualized (HTTP enabled) global and cloud storage
- Storage federation: unique namespace and "infinite" storage space

Data Storage for compressed physics data Key-value store

- Facebook warm BLOB (Binary Large OBject) storage system
- Key-value store for immutable BLOBs (photos, videos, ...)
- Data organization: 100 GB volumes with in-memory index
- In production since almost 2 years
 - 65 PB, 400 Billion pictures
- WORM access pattern. No delete !

Data Storage for compressed physics data Lustre: clustered file system

- Many occurrences in the world:
 ~50% of Top500, Titan e.g.
- A proof of concept with done with:
 - Intel (distributing the Lustre CFS)
 - Dell for the hardware
- At
 - DAQ lab
 - Dell technical centre in Germany

