
Report VecGeom

Sandro Wenzel; for the VecGeom team

Fermilab, 20.10.2014

- status information/workplan/ideas -

1

reminder what we talked about last visit
 High performance geometry

-- ideas for future direction
(or reasons to start from scratch)

--

meeting at Fermilab, 21.1.2013

Sandro Wenzel / CERN-PH-SFT

Sandro Wenzel

challenges continued ... / implications

targeting different backends (vector (Vc, CilkPlus), GPU, scalar)
sounds like a lot of code repetition if we continue to code the way it
was done in the past

will be a nightmare for maintenance and testing

We should hence (these points are related)
write code which is generic

kernels which work with scalar or vector arguments

reuse code as much as possible without performance loss

example: many kernels for tube / cone / polycone are shared and should be written
only once (without function calls)

write code which is composeable of smaller kernels

argued for geometry code
rewrite:

• generic (scalar + vector)
• platform indep (CPU +

GPU)
• increased modularity
• increased performance

2

Today: Overview (plus points)

Largely put into practice all our primary goals in „VecGeom“:

• developed a general abstraction layer as a foundation to code generic
geometry algorithms for CPU-scalar/CPU-vector/CUDA use cases

• based on traits, templates, function overloading, abstraction layer for ifs, etc...

• CPU-vector is independent of concrete SIMD wrapper class (in theory)

• provided generic algorithms for a handful of geometry primitives

• class structure to represent detectors

• provide ways to copy geometries from CPU to GPU

• provide simple navigation for CPU-scalar/CPU-vector/CUDA

• excellent performance (scalar, vector, CUDA?)

• USolids compatible and shared USolids/VecGeom repo

• started with systematic testing effort/suite

3

Today: Overview (minus points)

• points where we are not doing so well until now:

• documentation

• coding conventions

• some type and function namings which are confusing

• support for OpenCL

• testing, testing, testing (standalone unit tests, shape stress tests, continous
integration)

• benchmarks too limited

• no continous performance monitoring

• issue tracking (bugs should be reported ...)

4

Status overview
Status overview given for the follow points:

• Implementation Status: generic/portable implementations
of essential navigation method: Contains/Inside, SafetyTo[In|Out],
DistanceTo[In|Out]

• GPU tested: whether code currently compiled on GPU

• by construction, our shapes will be usable on GPU; a cross here usually
just means „not yet tried“ or „small compilation problems to fix“

• USolid compatible: whether the vecgeom shape supports all
VUSolid functions (Normal, GeneratePointOnSurface, Capacity,
SurfaceArea,)

• usually no big effort to achieve this

• Stress tested: whether the shape is succesfully stress tested
with the new stress-testing framework (Tatiana)

• cross here: potentially some hard work to do; not necessarily a blocker
though

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

5

Status of shape implementations

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

6

Status of shape implementations (2)

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Paraboloid
Orb
Trapezoid
Tube[s]
Trd[1|2]
Parallelepepid
Hyperboloid ?
Torus
Polyhedra
Sphere
Cone[s]
Arb8@+@Tet
Ellipsoid ?
Polycone
Composites
CutTube
Twisted[*]
Extruded
ScaledShape
TesselatedS

7

Relevant for CMS (2014/15 gdml file)

Shape
algthm.+
Impl.+

GPU+
tested

unit+
tests

stress+
test

+Usolids+
compati

Box
Tube[s]
Cone[s]
Trapezoid
Torus
Polyhedra
Polycone
Composites
Trd[1|2]
Paraboloid
Orb
Sphere
Ellipsoid ?
Parallelepepid
Arb8C+CTet
CutTube
Twisted[*]
Extruded
Hyperboloid ?
ScaledShape
TesselatedS

8

Shapes: immediate future work

• finish the CMS shapes (including testing)

• test shapes on GPU

• however, even if we don‘t manage everything can always
dispatch to ROOT shapes underneath (on the CPU)

9

Shapes: longer term goals

• finish all shapes

• provide Exact + approx Safeties for all shapes (or maybe
ExactSafetySquared)

• DistanceToOut in both versions (with and without normal
calculation) by using same generic templated code

• step by step integration of vecgeom shapes into USolids
(started already with Paraboloid)

• [your suggestions ...]

10

Navigation components: status

• based on new „NavigationState“ objects

• simple (brute-force) navigation algorithm implemented

• navigator is stateless; state is totally encapsulated in
„NavigationStates“

• scalar + vector version

• successfully tested in Geant-V; compared against TGeo

• should run on GPU but not yet tested (good item for
this week?)

11

Navigation components: future work

• synchronization (copying) of NavigationState objects between
CPU + GPU (needed to start simulation on CPU and
continuing on GPU)

• voxelization for „locate“ functionality; should be easy

• voxelization for „distance“ functionality; might be hard to
combine with vectorization; one approach could be to use
extreme „voxelization“ as suggested by Rene for the 2 or 3
most important logical volumes.

• [your input...]

12

Performance aspects: currently done

• our code performance is very good

• currently we benchmark mostly individual shapes; (for
scalar/vector/CUDA) and compare them with Geant4/
ROOT/USolids performance

• benchmark cases and parameters often some standard
values (e.g., hit-biases) which might not be
representative for experiments

13

Performance aspects: wishes for future

• go beyond shape benchmarks: benchmark navigation on
logical volume level

• take many different benchmark cases; ideal scenario: take
geometries from experiements + real track data („profile
guided benchmarking and optimization)

• could then choose best navigation algo/parameters + on a logical
volume basis

• started this process (Heegon + Federico)

• continous performance monitoring (Jenkins) with graphics
output

• compare performance to industry solutions (game engines,
ray tracing engines, etc.) -- nice topics to students -- some
contacts to industry exist

14

Coding conventions; documentations;
code structure

• we are not doing well with documentation (in code and
documents explaining the algorithm)

• not doing well following coding conventions

• some namings/interfaces which are still weird

• due to very dynamic team evolution and a very goal
oriented procedure

• Propositions??

15

Tests

• we are not doing well with testing

• nearly all base classes are missing important unit tests;
tests are not run automatically when we commit (or even
in Jenkins); usually it is Philippe/Guilherme who point out
that something is broken

• immediate actions: we complete the ctests (easy):

• make sure that all tests have proper return codes

• before each commit we run „make test“

16

OpenCL

• initial study done by Gabor Biro

• current conclusion is that OpenCl not able to compile
our generic code (even with AMD C++ extensions)

• problems are: (virtual functions); system include files, ::
operator, ...

• probably wait for next generation compilers, contacted
„codeplay“ for beta version of SYCL compiler; should get
it soon

17

Other (longer term) topics

• IO (gdml, ROOT, other formats: triangles)

• Visualization; Rendering of detector elements;

• started to look into „three.js“

18

Other points you‘d like to discuss

•

19

