
GeantV scheduler, concurrency

Andrei Gheata

GeantV FNAL meeting

Fermilab, October 20, 2014

Parallelism

• Threads
– 1 master: initialization

• idle during transport

– N workers: transport, re-basketizing
• No cross-talk during transport
• Concurrent write to pending baskets (N to 1)

– 1 scheduler: trigger priority mode, garbage collections
• Concurrent write with workers to pending baskets (N+1 to 1)

• Queues – a lot of work done to improve here
– 1 work queue, 1 output queue (removed)

• ~1E5 transactions/sec

– N volumes basketizer queues
• Pre-allocate baskets, activate current one (take from queue)
• Lower throughput than main work queue

• Amdahl in both thread communication and queues
– First can be alleviated by changing basketizing policy

• E.g. thread “ownership” for basketizers

Basketizing -> filtering

Basket
manager

Transport
threads Basket

manager

Basket
manager

Basket
manager

Filter
1,2,3

Basket
manager

Basket
manager

Filter
4,5,6

Transport
threads

MPMC queues

• MPMC = multi producer multi consumer concurrent queues
• We exchange baskets and individual tracks between

threads using concurrent queues
– Major component for optimizing GeantV performance

• Many flavors of MPMC
– Sync type: atomic (aka lockfree) versus mutex based
– Memory management: bounded versus infinite
– Functionality: provide priority mechanisms or not
– Implementation: ring buffer versus linked list, …

• Performance measured in transactions/second
– Queues give generally best throughput in single thread mode:

one does not measure scalability, but only throughput
degradation with NTHREADS

Queues in GeantV

• Mutex based dcqueue
– In production as work queue, provides priority

• Mutex/atomic hybrid priority_atomic
– Mutexed only in high concurrency regime, provides priority

• Atomic CAS (compare and swap) mpmc_atomic
– In production for basketiser queues, replacing dcqueue
– Circular buffer, no priority

• Array lockfree carray_lockfree (ported by Omar)
– Another implementation of circular buffer queue

• Boost lock free queue boost_lockfree (ported by Omar)
– Boost implementation of lcck free queue

Performance x86_64_4_core

Performance x86_64_48_core

Performance x86_64_apple_8_core

Queues summary

• Our current dcqueue is outperformed by all the
others on all platforms
– We currently work at ~105 transactions/sec

• Lockfree queues are doing great on Mac
compared to mutex-based ones (50x factor!)

• priority_atomic is the only current replacement
for dcqueue (must provide priority)
– We can expect a factor of 2 queueing improvement on

x86_64 linux

• Reducing Amdahl requires revisiting the
basketizing model

To do - scheduling

• Generic basketizers
– Move from a volume oriented basket manager to a “filter” concept
– Filters have to be complementary (F1+F2+…+Fn=ALL)
– Parallelism model upgrade: no concurrency per filter

• A thread can only invoke a subset of filters (owns the associated baskets)

• Integrate a working GPU scheduler
– What gets filled in GeantTrackV?
– What are the blockers?
– GPU basketizer?
– I hope to clarify the issues related to GPU scheduling during this workshop

• Integrate I/O with the scheduler
– First step: User data structures (hits/digits)
– Second step: kinematics

• Requires event model (e.g HepMC, custom, …)

