Status of Vectorized Physics

Soon Yung Jun (FNAL)

25C Ago: Death of Hector

2 Decades Ago: Death of Vector

Today: Vector is still on HPC Battle Field

Allies of GeantV

Specialized Applications

- Vector: no good for convention physics model!
 - pipelined instruction/data throughput
 - locality (spatial, temporal)
- GPU : no good for convention physics model!
 - arithmetic intensity
 - substantial parallelism
 - throughput over latency
- Common strategies or potential solutions?
 - decompose tasks
 - minimize branches and data dependencies
 - share or reuse data

High Performance Physics Models

- Physics processes and models cannot be easily vectorized or parallelized: Why?
 - stochastic process (random-ness kills parallelism)
 - decision trees (branches and switches)
- Paradigm swift
 - task level parallelism
 - algorithmic changes (performance over ...)
 - tabulated physics
 - alias method (replace loops with conditional breaks)

Task Decomposition

- Task by the particle type (e⁻,γ, *h*) or geometry
- Regroup particles (tracks) by the same task

Alias Method: Sampling

- Recast p.d.f f(x) to N equal probable events, each with likelihood 1/N=c
- Alias table
 - a[recipient]=donor
 - q[N] = non-alias probability
- Sampling x_i : random u₁, u₂
 - bin index: N x $u_1 = i + \alpha$
 - If (q [i] < u₂) : take j=i
 else take j = a[i]
 - $x_j = [\alpha j + (1-\alpha) (j+1)]\delta x$

Particle Tracking

• Process

- mean free path analysis (step length)
- sampling physics process
- Associated
 - multiple scattering (true path length)
 - transport (geometry limited step)
- Interaction
 - sampling secondary particles
 - other collision analysis

Applications of Alias Methods

- Replace non-vectorizable conditional branches
 - composition and rejection methods (do-while)
 - no bias compared with Geant4 in secondary particle sampling (see the next page)
 - conditional exit to select (if-break)
 - physics process (relative weight of cross sections)
 - random element of composite material
 - (can have pre-built alias tables from xsec data table?)
- To vectorize alias method effectively
 - coalesced random array
 - gather scatter memory accesses

Alias Method: Validation

Angles of scatter particles

Gather

 Gather operations may be very expensive if associated arithmetic intensity is light

.

Sampling Physics Process

• Inclusive sampling vs. explicit sampling

	Inclusive	Explicit
step length (d) physics process	d=min(d _t ,d _g) d _t =-log(u)/σ _t sampling by xsec weights	d=min(d _i ,d _g) d _i =-log(u)/σ _i Process for the smallest d _i
N _{int} left	process independent	material independent
N random N log(rand)	less than nv + (np-1) nv nv	nv x np nv x np
Consideration for vectorization	conditional exit to select a process Σwgt[i] < u	if test to select d and a physics process
implementation	holistic approach with a fixed number of processes	modularized (OO) design

Remarks

- Statically, explicit sampling = inclusive sampling
 - validation for passage through inhomogeneous materials (Geant4 vs. GeantV inclusive sampling?)
 - Independent of process history?
- Cons and Pros
 - performance-wise: implicit
 - flexibility-wise: explicit
 - vectorization-wise: explicit
- Performance, accuracy, portability

Status

- Implemented alternative secondary particle sampling (alias, inverse CDF) for
 - electron models
 - Bremstraahlung (Seltzer Berger)
 - Ionization (Moller Bhabha)
 - photon models
 - Compton (Klein Nishina)
- Working on vectorization schema for the mean free path analysis: need to converge
 - tracking strategies (inclusive vs. explicit)
 - simd layers (outer vs. inner loop)

Toward HP Physics Library

- Efficient random number handling and data layout
- More task decomposition
- Adopt the template approach (portability)
- Need more troops

Backup

• Ex1: do-while loop

```
xo = f(Z);  // common data
for(i = 0; i < ntracks ; ++i) { // for the problem-size
yo = g((track.E)[i],xo);  // for a given constraint
\end{verbatim}
{\color{magenta} \begin{verbatim}
do {  // sample x and y
x[i] = h(r1);
y[i] = s(x[i],r2);
} while (y[i] < yo);
}
```

• Alternative: alias method for sampling from p.d.f (differential cross sections)

• Ex2: conditional exit to select a physics process

```
// np = number of process
// w[np] = relative weight of cross sections
int ip = np;
double w = 0;
double fu = rand()
for (int i=0 ; i < np-1 ; ++i) {
    w += w[i];
    if (w < fu) { ip = i; break; }
}
```

• Alternative: alias method with the normalized weight of cross sections (physics processes)

• Ex3: conditional exit to select a physics process

```
// np = number of process
// w[np] = relative weight of cross sections
int ip = np;
double w = 0;
double fu = rand()
for (int i=0 ; i < np-1 ; ++i) {
    w += w[i];
    if (w < fu) { ip = i; break; }
}
```

• Alternative: alias method with the normalized weight of cross sections (physics processes)

• Ex4: if-test to select a random atom

```
// np = number of processes
// s[np] = proposed step lengths
int ip;
double s = 0;
double tmp = MAX;
for(int i=0 ; i < np ; ++i) {
    if(s[i] < tmp) { s = s[i]; tmp = s; }
}</pre>
```

• Alternative: mask