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 Artificial intelligence vs. automatic control 

 Vision capabilities bring the robots nearer to human skills 

 The information that can be extracted form images is very rich and can be used at 

different levels of a hierarchical architecture 
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 Dynamic look-and-move 
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Pose Estimation 
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 Reconstruction of object pose from observed workspace 
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 3D monocular robotic ball catching 

 Visual grasp of unknown objects 

 Real-time deformable object tracking 

 Aerial visual manipulation 
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 Why ball catching tasks … 

 Advanced robotic systems, which are required to perform quick reactions in response to 

visually perceived movements in a partially structured environment, are no doubt a good 

benchmark where testing new control algorithms and new estimation/prediction 

processes 

 They require 

 smart sensing  

 object tracking and motion prediction 

 on-line trajectory planning 

 motion coordination 
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 In the literature … 

 Most of the presented approaches use either a stereo visual system to solve the 3D 

catching problem or a single camera for the 2D case 

 This scenario is reasonable because 3D tracking of the ball takes benefits from 

triangulation methods while, in the case of a single camera, only 2D information is 

directly available 

 However, a high frame rate and optics with a good accuracy are required to achieve an 

accurate and fast trajectory prediction, i.e. a successful catch 

 By using only one camera, the cost of the equipment can be reduced. 

Moreover, the calibration procedure for one camera is easier than in the 

stereo case 

 System 

 A robot manipulator with a standard CCD camera mounted in an eye-in-hand 

configuration which is driven by visual information in order to track a thrown ball  
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 The whole image is elaborated until the ball is detected, then a dynamic 

windowing technique, which is based on a first-order prediction algorithm of 

the ball motion in the image plane, is employed after the first detection 

 An equalized color-based clustering is adopted in the image processing, and 

it makes use of the Hue, Lightness, and Saturation Color Space 
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 Without loss of generality 

 The camera frame is considered coincident with the hand (end-effector) frame, with the 

camera optical axis aligned with the hand approaching axis 

 The proposed visual control law belongs to the category named Resolved-Velocity 

Image-Based Visual Servoing, hence the manipulator dynamics is taken into account 

directly by the low-level robot controller 

 Partitioned approach  

 The rotational components of the robot motion will be reserved to the ball tracking task 

 The positional components of the camera motion have to be generated in a way as to 

intercept the ball trajectory 
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Ball Tracking 
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 Notation 

 Normalized image coordinates of the ball centroid 

 

 

 Ball position w.r.t. the camera frame 

 

 

 Absolute velocity of the camera frame expressed in the camera frame 

 

 

 Absolute velocity of the ball expressed in the camera frame 
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 Differential relationship in the image plane 

 

 

 Interaction matrix 

 

 

 

 

 Control law (rotational part) 
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 Control gains 
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 Fifth-order polynomial vector to compute the desired trajectory for the camera 

on-line in the 3D Cartesian space 

 Control law (linear part) 

 

 

 Joint velocity control 

 

 

 Redundancy resolution 

 avoiding joint limits 

 avoiding kinematic singularities 

 limiting motion of the track  
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Motion Planning and Execution 
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 Interpolation of 2D measurements along time 

 Enhanced robustness by collecting visual data moving camera along 

significant baseline 

 Orientation controlled to keep ball in field of view 

 

 Optical ray passing through absolute 

     origin ck of camera and feature vector rk 

      at time tk 
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Trajectory Estimation 
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 Neglecting air drag factor 

 

 

 Resulting linear system with nl measurements 

 

 

 Weighted pseudo-inverse of A 
 Measurements less affected by air drag (ball velocity smaller) 

 Higher image resolution (ball closer to camera) 
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Trajectory Estimation 
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 The trajectory estimation provided by the linear algorithm is employed as a 

starting point for a non-linear estimation algorithm, that continuously refines 

the current estimation using new available ball observations and a more 

accurate ball trajectory model 

 

 

 

 estimated ball position 

 

 ballistic ball motion with air drag 
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 When the refinement process stops, the catching path can be generated 

 The hand orientation is controlled in order to have a direction of the camera equal to the 

tangent to the estimated ball trajectory at the predicted catching point 

 The hand starts to close its fingers and is moved following the same predicted path of the 

ball, while its velocity will be decreased in a fixed time (or displacement) until zero, in 

order to allow the dissipation of the impact energy in a sufficient time interval 

 Estimated parameters 

 The position and linear velocity term are computed from the previous numeric integration 
 

 The angular velocity can be obtained as 
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Results 
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 3D monocular robotic ball catching 

 Visual grasp of unknown objects 

 Real-time deformable object tracking 

 Aerial visual manipulation 
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 Visual grasp of unknown objects 

 An object model reconstruction algorithm is required 

 Main required characteristics: 

 The algorithm must be fast 

 High accuracy is not required 

 and ... 

 The reconstruction process 

 should be suitable for  

 grasping 

            

 it becomes an 

 active component 

 of the grasp process 

 

Visual Grasp 
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 Visual grasp of unknown objects 

         classical serial approach     proposed parallel approach 
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 Assumptions 

 An eye-in-hand camera configuration is considered 

 Multi-fingered hand 

 The observed object is  

 a rigid body fixed in the space 

 from a topology point of view, an orientable surface with genus 0 

 distinguishable with respect to the background and other objects 

 Goals 

 Grasp a 3D unknown object while reconstructing at the same time its surface 

 The reconstruction of the object is a secondary outcome of the proposed method 

 The fingers move on the current (virtual) reconstructed surface towards local minima 

according to suitable grasp quality measures 

 A safety distance is held resulting in a floating effect around the object 

Assumptions and Goals 
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 Data flow 

 Some preparation steps 

 Object surface reconstruction 

 Local grasp planner 

 The reconstruction algorithm updates in real-

time the estimation of the current 

reconstructed object surface 

 The local planner, on the basis of the current 

surface estimation, computes the fingers 

trajectories toward the current local optimal 

configuration for the grasp 

 Reconstruction and local planning can be run 

in parallel resulting in a very fast grasp 

method 

Floating Visual Grasp Algorithm 
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 Image acquisition stations 

 One, two or more circular trajectories at a constant 

distance from the object with different view angles 

 n acquired images 

 Object silhouettes extraction 

 Elaborations to enhance the quality of silhouettes 

Preparation Steps 
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 Preshaping algorithm 

 The aim is to find the minimum ellipsoid which 

surrounds the object 

 For each image, the four planes of the Cartesian 

space containing the origin of the camera frame 

and two adjacent vertices of the corresponding 

silhouette bounding-box in the image plane are 

considered,  resulting in 4n Cartesian planes 

 The intersections of these planes create a 

polyhedron which contains the object visual hull 

and whose vertices can be easily computed by 

solving a linear programming problem 

 Once the vertices have been computed, the 

central moments can be evaluated and thus the 

pseudo-inertia tensor; its eigenvectors and 

eigenvalues define the principal axes of inertia of 

the ellipsoid surrounding the object 

Preshaping 
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 Cross reticular topology with a virtual mass 

associated to each ellipsoid sample point, with 

springs linked to closest cross points and a 

spatial damper 

 

 

 The equilibrium is achieved when the elastic 

forces generated by the grid and the attractive 

forces generated by the visual hull become equal 

 The accuracy of the reconstruction process 

depends 

 on the number of views 

 on the distribution of the acquisition stations 

 on the density of the reconstruction sphere 

Object Surface Reconstruction 
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 The local grasp planner generates the fingertips trajectories on the 

current reconstructed surface (keeping a fixed floating safety distance) 

 Starting from the current grasp configuration, the planner generates the 

motion of the fingertips from the current position to a new set of points of 

the update surface 

 At each contact point of the current grasp configuration is associated a 

suitable field of forces, which is used to generate the motion of the 

fingertips 

 The process is repeated in a recursive manner, until improvements of the 

quality measure are obtained 

 The planner ends its job when the object reconstruction algorithm 

reaches an equilibrium; then, the planner computes  the final grasp 

configuration and the floating distance is progressively reduced to 

achieve the desired grasp action 

 For fine manipulation the initial grasp configuration is chosen as an 

equilateral grasp in a plane parallel to the two minor axes of the 

ellipsoid 
 

Local Grasp Planner 
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 Planar grasps in 3D space where the contact points lie in 

the same grasp plane 

 At each current contact point, a field of forces is computed 

as a sum of suitable contributions: 

 Aligning the contact points in the same grasp plane 

 Attracting the grasp plane towards the center of mass of the 

current reconstruction surface 

 Attaining an equilateral grasp configuration 

 Enlarging the area of the grasp polygon 

 Avoiding joint limits overcoming kinematic singularities and 

finger collisions 

 This field is projected onto the tangential plane to the 

current reconstruction surface at the current contact point 
 

Grasp Quality Measure 
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 The local grasp planner produces a sequence of intermediate target grasp configurations at 

each iteration of the object reconstruction algorithm 

 The intermediate configurations are used to generate the fingers paths 

 The sequence of intermediate configurations can be suitably filtered by a spatial low-pass 

filter in order to achieve a smooth path for the fingers on the object surface 

 Only the final configuration has to be reached exactly, while the intermediate configurations can be 

considered as “via points” 

 A fixed floating distance is held during the motion and is progressively reduced at the end of 

the reconstruction process to produce the final grasp action 
 

Finger Trajectory Planner 
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 Performance of the reconstruction algorithm 

 Object: teddy bear (12 images with =80°,  6 images with =50°, 1 image from the top) 

 

 

 

 

 

 

 

 Dynamic parameters 

   

Experiments 
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 3D monocular robotic ball catching 

 Visual grasp of unknown objects 

 Real-time deformable object tracking 

 Aerial visual manipulation 
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The RoDyMan Project 
Real-time Deformable Object Tracking       33/54 

 Goal 

 Derivation of a unified framework for dynamic 

manipulation where the mobile nature of the robotic 

system and the manipulation of non-prehensile non-

rigid or deformable objects are explicitly taken into 

account 

 

 Achievements 

 Novel techniques for 3D object perception, dynamic 

manipulation control and reactive planning 

 Innovative mobile platform with a torso, two 

lightweight arms with multi-fingered hands, and a 

sensorized head for effective execution of complex 

manipulation tasks, also in the presence of humans 
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A Challenging Benchmark 

 Validation 

 Dynamic manipulation will be tested on an advanced demonstrator, i.e. pizza making 

process, which is currently unfeasible with the prototypes available in the labs, where the 

application scenario is conceived to emulate the human ability to carry out a challenging 

robotic task 
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Perception 

 Dynamic manipulation of deformable objects 

 Perception is a main challenge 

 Use of passive (monocular, stereo cameras) or active (laser scanners, ToF cameras, …) 

vision sensors  

 Real-time deformable object tracking 

(e.g. the pizza dough) 

 Environment awareness 

 Localize other objects, robots, people 

 Obstacle avoidance, path planning 

 

 

Real-time Deformable Object Tracking       35/54 



PURESAFE • Final Conference                                                                                Genève • 21 January 2015 

Real-time Deformable Object Tracking 

 Challenges 

 Large deformations, plastic deformations 

 Textureless object 

 Occlusions 

 Real-time 

 RGB-D sensor (active depth sensor) 

 Modelling 

 Physics-based model  

 Finite Element Method 

 Tracking 

 Prior segmentation of the object  

 Rigid and non-rigid iterative closest points algorithms 

Real-time Deformable Object Tracking       36/54 
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Physics-based Model 

 Finite Element Method (FEM) 

 Based on continuous mechanics 

 Approximation over elements (tetrahedrons) of a mesh representing the object: 

 

 

 

 

 

 Linear interpolation of the displacements     of the vertices of the element  

 

 

 W.r.t. other models (parametric, mass-spring systems), able to model various sorts of 

deformations (highly elastic, viscous, plastic), better propagation of deformations 

(volumetric effects) 

 Computationally challenging 

Tetrahedral mesh 
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 Computation of deformation internal forces     on the vertices of element  

 Linear elastic internal forces 

 Linear elasticity (Hooke’s law)                                   : stress        : strain      : stiffness tensor 

   : stiffness matrix 

    depends on Young modulus and Poisson ratio, can be pre-computed 

 Computationally efficient, but sensitive to rotation transformations of the element     

 Co-rotational approach 

 Rotational invariance for the elements, so as to handle large deformations 

 Decomposition of the deformation gradient into a rotation       and a pure deformation 

giving 

 

Linear Co-rotational Approach 
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 Temporal coherence by adapting frame-by-frame the segmented area to a 

strip around the contour 

 

 

 

 

 

 

 Energy minimization effective on the strip 

 Faster 

 Real-time issues: CUDA implementation 

 

Segmentation 

Previous segmented frame 
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 Rigid process 

 Iterative Closest Point algorithm, between mesh (rigid) and segmented point cloud, to 

track fast rigid motions 

 Non-rigid process 

 Computation of external forces       exerted on vertices based on segmented point cloud 

 Closest points (nearest neighbour search) visible surface of the mesh/segmented point cloud 

(compression forces) 

 Closest points (nearest neighbour search) segmented point cloud/segmented point cloud 

(stretching forces) 

 Elastic forces between correspondences 

 Numerical resolution of the ODEs integrating the internal and external forces 

(Euler implicit integration + conjugate gradient), to update the mesh 

 

 Real-time implementation based on the SOFA library 
 

 

Real-time Tracking 

extf
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Results 
Robotic Dynamic Manipulation       41/54 

Execution: ~40 fps 
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On-going Work 
Robotic Dynamic Manipulation       42/54 

Effect of plastic deformation 
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 3D monocular robotic ball catching 

 Visual grasp of unknown objects 

 Real-time deformable object tracking 

 Aerial visual manipulation 
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The ARCAS Project 

 Goal 

 Development and experimental validation of the first cooperative free-flying robot system 

for assembly and structure construction 
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 Image-based visual servoing 

 Control input (control law) defined directly 

into the image plane of the camera 

 

 Camera configuration 

 Eye-to-hand 

 Eye-in-hand 

 Onboard-eye-to-hand 

Use of Vision for Aerial Manipulation 
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Image plane 
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 Image point coordinates 

 

 

 Target image kinematics 

 

 LO  interaction matrix 

 

 Carried points kinematics 

 

 q robotic arm joint vector 

 

Kinematics of the Observed Points 
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Point-based Visual Servoing 

 Motion of the image features in 

the image plane is smooth and 

quite straightforward 

 Drawback: Cartesian motion in 

the 3D space can be undesirable 

and/or unpredictable, that could 

not be borne in practice 
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 Point-based image moments 

 

 

 

 Point-based image moments kinematics 

 

 

 

where 

 

Point-based Image Moments 
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 Feedback visual error 

 Visual error kinematics 

 

 

 Proposed control law that nullifies visual error (main task) 

 

 Secondary task: nullify error on image points coordinates 

 

 Third task: aligning manipulator with UAV’s center of gravity 

 

 Fourth task: maximize dexterity 

 

Moment-based Visual Control 
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Orthogonal Assembly 
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 The grasp of a bar has been experimentally performed with the use of visual 

information provided by a camera mounted on the vehicle base (position-

based approach) 

 The hierarchical task composition employed for the visual grasping 

experiment, in the adopted hierarchical order, is as follows: 

1. Camera field of view 

2. Gripper orientation 

3. Gripper position 

4. Arm-joint limits (i.e. desired arm configuration) 

5. Yaw approaching angle 

 

Visual Grasping of a Bar 
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 Phase 1: The gripper is 

moved towards a way 

point 10 cm over the 

grasping point 

 

• Phase 2: The final 

grasping position is 

commanded by smoothly 

moving the target position 

to the final one 

 

• Phase 3: The grasp 

command is sent to the 

system 

 

Experiments 

Position error Orientation error 

Desired arm configuration 
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Results 
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