Remote operations of fleets of autonomous robots

Challenges and approach

Simon Lacroix

Laboratory for Analysis

and Architecture of Systems

CNRS, Toulouse

Remote operations

• Sites / areas where human presence is precluded

Either not possible, too risky or too costly for humans

Remote operations

- Sites / areas where human presence is precluded
- To do what ?

Considered missions:

- exploration, search
- coverage / patrolling: observations, scene analyses, situation assessment
- *interventions* in the environment

In various application contexts:

- Environment monitoring (pollutions, science, ...)
- Search and rescue
- Civil security, defense applications
- . . .

Outline

```
Remote operations
       of
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

Outline

```
Remote operations
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

- Advantages brought by robot teams
 - Increase of the achievable task and operation spaces
 - Higher robustness wrt. failures
 - Complementarities
 - → Operational synergies
 - → Robotic synergies

• E.g. Air / Ground fleets of robots

"Remote eye" @ CMU

On going work @ ACFR

On going work @ LAAS & Onera

- E.g. Air / Ground fleets of robots
 - Ground robots

Not so good at:

Good at:

- ✓ Precise information gathering
- ✓ Physical intervention
- ✓ Long duration missions
- ✓ Heavy load carrying
- Aerial robots

Global information gathering

Good at:

- ✓ Global information gathering
- ✓ High speed mobility
- ✓ Avoiding hazards
- ✓ Communication relaying

Not so good at:

✓ Self localization

✓ High speed mobility

Avoiding hazards

- ✓ Long duration missions
- ✓ Physical intervention
- ✓ Heavy load carrying

• E.g. Air / Ground fleets of robots

A variety of possible cooperation schemes:

- UAVs assist UGVs
 - Localization
 - Communication relay
 - Environment modeling
- UGVs assist UAVs
 - Detect clear landing areas
 - Carry on UAVs
 - Provide energy support

- Exploration
- Monitoring
- Intervention

Outline

```
Remote operations
       of
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

Operation of robot fleets

- No operators on site does not mean "no operators"
- Robot teams must not imply teams of operators!
 - → Cooperation / coordination issues must be solved by the robots
 - → A high level of autonomy is required
 - → (still low-level controls could be achieved by operators)

Outline

```
Remote operations
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

The three pilars of autonomy

A basic task: autonomous navigation

The three pilars of autonomy

- A basic task: autonomous navigation
- 1. Perception

The three pilars of autonomy

A basic task: autonomous navigation

2. Decision

Convolution of the robot model with the terrain model

Search

The three pilars of autonomy

- A basic task: autonomous navigation
- 3. Action

"Just" execute the planned motions

The three pilars of autonomy

2. Decision

Deciding, Planning = Simulation + Search

- Simulation of the effects of an action with a predictive model
- Search over possible organizations of possible actions to meet a goal or to optimize a criteria

The three pilars of autonomy

2. Decision

- Models are at the core of autonomy
 - Action models
 - Environment models

Outline

```
Remote operations
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

Challenges

Dozens of *heterogeneous* robots *cooperate* to achieve *long-lasting* missions in *large* environments

Large scale (km³) implies:

- Faster robots, longer missions ("lifelong autonomy")
- Large (multi-scale) environment models
- Communication constraints
- Cooperative and coordinated perception / planning / action
- Operating robot fleets: need for advanced interactions

Outline

```
Remote operations
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

Approach (1/2)

Environment models are at the core of autonomy

Environment models are at the core of cooperation

Illustration: planning a patrolling mission (1/2)

Illustration: planning a patrolling mission (2/2)

- Observable positions
- △ △ Starting position (manna)
- -- Path links (manna)
- Plan(manna)
- Starting position (minnie)
- -- Path links (minnie)
- Plan(minnie)
- △ △ Starting position (ressac)
- -- Path links (ressac)
- Plan(ressac)
- Com links

Resulting plans

What action models have been used?

Robot motion model

$$nav_time(R_i, C_j, C_k) \in [0, +\infty]$$

$$nav_cost(R_i, C_j, C_k) \in [0, +\infty]$$

Observation model

$$obs1(R_i, C_j) = \{C_1, ..., C_n\} \subset M_{R_i}, C_j \in M_{R_i}$$

 $obs_utility(C_i) \in [0, 1], C_i \in M_{R_1} \cup ... \cup M_{R_n}$

Communication model

$$com(R_i, C_j) = \{C_1, ..., C_n\} \subset M_{R_i}, C_j \in M_{R_i}$$

$$com2D(R_i, C_i, R_j, C_j) \in \{0, 1\}$$

What environment models have been used?

 To plan motions: express traversability / accessibility

What environment models have been used?

 To plan motions: express traversability / accessibility

- To plan observations: line of sight visibility
- To plan communications: line of sight visibility

Illustration: autonomous navigation revisited

What environment models have been used?

 To plan AGV motions: express traversability / accessibility

 To plan AUV motions: information quality (quantity) of the traversability model

Mission goal:

- Characterize state of boundary layer below and surrounding a cloud
 - atmospheric stability, lifting condensation level, cloud updraft
- Follow 4D evolution of the cloud
 - entrainment at edge, liquid water, cloud microphysical properties

4D adaptive sampling

- Servo on the gathered information to gain more information
- Optimize the drones trajectories (trade-off: explore vs. sustain)

- A *dynamic* phenomenon...
- ... observed *locally*

"Air truth"

- A dynamic phenomenon...
- ... observed *locally*

Known information at time *t*

- 1. Where to gather new information?
- 2. Who is flying where? And how?

- What environment model is used?
 - "Generic" physical model of the cloud...
 - ... dynamically updated
 - Winds ~ traversability
 - Quality / quantity of information drives the sampling

Where do environment models come from?

- A priori models
 - Orthoimages, digital terrain maps
 - CAD models
 - **—** ...
- Models built online
 - Robot localisation is a key

On the importance of localization

Localization is required to:

- Ensure the achievement of the missions, most often defined in localization tems ("goto [goal]", "explore / monitor [area]", ...)
- Ensure the lowest level (locomotion) controls
- Ensure the proper execution of paths / trajectories
- Ensure the spatial consistency of the built models

Localization solutions

A variety of available information:

- Motion sensors
 Odometry, IMU, velocimeters, ...
- Environment sensors
 Lidar, camera(s), radar, ...
- Infrastructure sensors GPS, radio receivers, ...
- A priori information
 Motion models, environment models (maps), ...

Localization solutions

A variety of available techniques:

- Dead-reckoning
- Map-based localization
- Simultaneous Localization and Mapping ("SLAM")

But... what localization?

Essential questions to answer:

- 1. With which precision?
- 2. In which frame?
- 3. At which frequency?
- 4. Integrity of the solution?
- 5. Disponibility of the solution?

From cm to meters

Absolute vs. local

From *kHz* to "sometimes"

cm accuracy, > 100 Hz, local frame

- Ensure the lowest level (locomotion) controls
- Ensure the proper execution of paths / trajectories
- Ensure the spatial consistency of the built models

~m accuracy, "sometimes", = global frame • Ensure the achievement of the missions, most often defined in localization terms ("goto [goal]", "explore / monitor [area]", ...)

What environment models are used for localisation?

Geometric models (a priori of built by the robots)

• Dedicated models (e.g. "landmarks", "views memory")

Wrap up: a patrolling mission

Summary on environment models

Information flow

Exhaustive environment Exteroceptive sensor **Environment models** description data "The world" Geometry Semantics Images Lighting Perception Decision conditions Sensors Physical Point clouds properties Thermal Chemical Radar echoes properties properties Temperature, humidity... Action models Initial models

Managing environment models

A variety of dedicated models has to be maintained

Managing environment models within a team

Distributed models management:

- APIs for clients
- Maintain the inter-robot inter-model consistency

Outline

```
Remote operations
       of
      fleets
       of
   autonomous
     robots
   Challenges
       and
    approach
```

Approach (2/2)

Environment models are at the core of autonomy

Environment models are at the core of cooperation

Environment models are at the core of operator interactions

Conclusions

- Most often, having the required information is having solved the problem
 - → Numerous tasks / missions can be turned into of information gathering approaches
- Autonomous robots (robot teams) are info-centric systems
 - → Key-role of environment representations
- Info-centric view + operator control impacts the overall system architecture
 - → "Resource oriented architecture"
 - → Operator / robot information sharing: spatial ontologies?
 - → (plus: adjustable autonomy)