Preventing hUman intervention for incrREased SAfety in inFrastructures Emitting ionizing radiation

European Organisation for Nuclear Research European Laboratory for Particle Physics

Collaborative planning and scheduling: towards an application of the ALARA principle in the intervention planning and scheduling phase.

Mathieu Baudin, CERN 20th January 2015

PURESAFE Final Conference, CERN, Geneva Switzerland

Table of content

- I. Planning and scheduling context
- II. Collaborative planning and scheduling
- III. Theory and practice: example of FAIR's Super-FRS
- IV. Conclusions and perspectives

I.1. Particle acceleration complexes

- Human interventions in particle acceleration complexes:
 - Preventive maintenance
 - Corrective maintenance
 - Inspection interventions
 - Consolidation interventions
 - Upgrade interventions
- Several hundreds of interventions per year
- Collaborative environment:
 - Several dozen scientific fields
 - Several dozen nationalities

Schematic of CERN's beam installations

Schematic of future FAIR installations

I.2. The cycle of operations

I.3. Ionizing radiation

Production during operation:

- Activation of neighbouring materials (accelerators, water, dust, etc.)
- Activation of targets or beam inserts

Measurements and estimates:

- Manual surveys
- In situ detectors
- Monte Carlo Simulations (thin granularity, simulations on nonexisting facilities, etc...)

Optics of FAIR's future Super-FRS

CERN's TCC2 target area

Dose rates simulated using FLUKA

I.4. Optimizing the interventions

Temporal optimization:

- Demanding requirements for performance and operation time
- High number of requested works
- Resource constraints (limited space, human resources etc.)

ALARA Optimization (As Low As Reasonably Achievable)

- Reduce the radiation dose
- A dose taken must be «JOLi» :
 - Justified
 - Optimized (trajectories, scheduling, etc.)
 - Limited (e.g. legal thresholds)

The ALARA optimization requires compromises between time, cost and received radiation doses

II. Planning and scheduling works

II.1. Working on both aspects

Aims:

- provide a collaborative planning and scheduling system
- Optimize interventions
 - Temporally
 - In terms of received radiation doses (individual and collective)

This implies:

- Collaboration between participants
- Simulation of different scenarios
- Optimization at both task and global levels

II.2. Collaborative planning and scheduling (1/2)

- Participants with specific roles submit activities and temporal constraints:
 - Sequential
 - Logistics (resources)
- The planning system :
 - May receive conflicts, feedbacks and couplings as input
 - Looks for compromises if necessary
 - Identifies and proposes solutions (if solutions exist)
 - **Optimizes** these solutions

Level 1: strategic

Level 2: tactical

Level 3: operational

Some of the roles encountered in the planning and scheduling system

II.2. Collaborative planning and scheduling (2/2)

Collaborative planning process time

Needs:

- A mechanism to add new tasks and constraints in a previously existing schedule
- Detect conflicting submissions
- Solve conflicts when possible
- Optimize sequence

II.3. Proposed solution: constraint propagation

•Constraint propagation :

- Not found in common approaches like PDM
- Used since the 1980s in A.I.

Advantages of A.I.:

- Propagation
- Equal treatment
- Conflict detection

Drawbacks:

- Exponential algorithmic complexity (time and memory)
- Mostly unknown to practitioners

Generalized Precedence Relations (GPR)

II.4. The Design Structure Matrix (DSM)

- A binary matrix used to:
 - Model systems
 - Simulate processes

- Sequential constraints
- Feedback, loops
- Parallel tasks
- Sequence optimization is performed via the sequencing algorithm
- The binary DSM can be enhanced to give more details about constraints

The 3 binary DSM dependencies

Sequencing a DSM

II.5. Allen's Interval Algebra

- Tasks and events are represented through time intervals
- They are linked using a set of 13 constraints
- A constraint can be:
 - A single element of the set (e.g. A <m> B)
 - A vector of several constraints
 (e.g. A <b, o, m> B)
- Each new constraint is propagated using a transitivity table

Relation	Interpretation	Gantt chart-like illustration
AbB	A takes place before B	A
B bi A	B takes place after A	В
A m B	A meets B	Α
B mi A	B is met by A	В
AoB	A overlaps B	A
B oi A	B is overlaped by A	В
AsB	A starts with B	A
B si A	B is started with A	В
AdB	A is during B	A
B di A	B contains A	В
AfB	A finishes with B	A
B fi A	B is finished by A	В
A = B	A equals B	A B

Relations of Allen's interval algebra

B r2 C	b	bi	d
b before	b	no info	b, o ,m, d,s
bi after	no info	bi	bi, oi, mi, d, f
d during	b	bi	d

A small portion of Allen's transitivity table

II.6. The collaborative process

- Collaborative constraint submission process:
 - Constraint submission
 - Constraint propagation
 - Compromise (optional)
 - CSP Solving (finding solutions)
 - Sequence optimization
 - Choice of baseline
- Humans remains in the loop select the solutions
- Addresses mostly only temporal information
- Radiation protection data needs to be superimposed

M. Baudin, P. Bonnal, J.-M. Ruiz, "The Collaborative DSM: a new way to handle complex collaborative planning and scheduling processes," 16th International DSM Conference, Paris, France, 2014.

III. Theory and practice: example of FAIR's Super-FRS

III.1. Choosing solutions

- The DSM solutions provide different durations and different doses
- For more optimization:
 - Try different access paths
 - Optimize trajectories and procedures
 - Split radiation doses between several operators
 - Move equipment out of controlled areas
- Optimal duration ≠ ALARA optimum

One scenario

=

One set of resources:

Human : Gaston

Locations: D1, Z3-6

Equipment: M10

III.2. Example of FAIR's Super-FRS

Access paths for robots and operators in FAIR's Super-FRS from the tunnel entrance to the work station at focal point FPF2. (Courtesy of Faraz Amjad)

III.3. Comparison of scenarios

Automated scenario

Remote-handled scenario

Duration estimates

Scenario	Number of tasks	Constraints (multiple)	Shortest time	Longest time	Number of solutions
Remote- handled	22	24 (6)	6 h 58 min	8 h 14 min	96
Automated	19	20 (6)	7 h 30 min	9 h 15 min	64

III.4. Temporal optimization

- Some optimization possibilities and complex constraints are found
- The shortest scenario is not the most realistic
- Involvement of operators in the planning process can diagnose such problems
- In this case, more optimization can be achieved by:
 - comparing different scenarios
 - Adding radiation data

III.5. Optimization at task level (1/2)

Radiation protection data comes from Monte Carlo simulations:

- 14 days of operation days and four different cooldown delays (12 h, 1 day, 7 days and 30 days)
- 4 months of operation with 2 weeks cooldown.
- 2 years of operation, 1week and 1 month cooldown

III.5. Optimization at task level (2/2)

- Interactive dose optimization
- 2D or even 3D software tools
- Realistic trajectories and procedures
- Human validation

Top: IVPlanner, C. Theis, CERN

Left: RADIJS, Th. Fabry, CERN

III.6. Radiation doses and cost estimates

Estimates for anticipated radiation doses

	Station	Cooldown	MC Op.	МНС Ор.	Collective
Remote- handled scenario	1	1 day	292.52 μSv	101.71 μSv	394.23 μSν
		1 week	140.49 μSv	47.65 μSv	188.14 μSν
	2	1 day	12.96 μSv	6.25 μSv	19.21 μSν
Automated scenario	1	1 day	0	0	0

Cost estimates (Courtesy of F. Amjad)

Scenario	Equipment	Cost estimates	Total cost estimate
Automated	2 omnimoves 1 robotic arm 1 mobile crane	1.25 M€ 200 k€	1.45 M€
Remote-handled	1 omnimove Extra shielding 1 Exo-Hands 1 mobile crane	500 – 600 k€ 200 k€	800 k€

IV. Conclusions and perspectives

IV.1. Conclusions

- The presented work proposes a collaborative planning and scheduling process, which:
 - is based on collaboration, constraints and compromises
 - is focused on simulation and comparison of scenarios in order to focus on feasibility rather than mathematical optimum
 - allows for non-temporal criticality, and places the engineer in a responsible, decision-making position.
- It needs to be completed using radiation protection data to properly integrate the ALARA approach in the intervention planning and scheduling phase

IV.2 Perspectives

- A prototype application has been developed
 - Still "confidential"
 - More development remains, e.g. to work on large schedules
- Work remains concerning the scenario selection:
 - Academic work: study the collaborative decision making (MCDA, Multi-objective optimization, etc.)
 - Practical work: integrate it in the tool
- In terms of practice, integration remains a challenge (1 intervention plan = 4 software tools)

cern.ch/puresafe