Management of critical situations

Impulse from automotive perspective

Thomas Naumann

Different phenomena of critical situations

- Phenomena occurs in the whole product life cycle.
- Phenomena have complex, contextual relations to characteristics of product, organization and process.
- Phenomena are related to each other but not causal \rightarrow principles of contingency.
- Critical or unexpected events and their implications are usually unwanted.
- The objective is to influence critical situations early and in advance.
- Product development plays the most important role in product life cycle.

Badke-Schaub (2012) "Critical situations and crucial actions have influence in the goal, direction, concept, detail, teamwork, planning and ideation towards the design result."

Process management in theory

Definition of critical situations

Research on critical situations has its origins in psychology: *Flanagan 1954, Jones 1970, Goldschmidt 1996*, especially Frankenberger 1997, Frankenberger and Badke-Schaub 1998.

Frankenberger (1997) "Critical situations are crucial and influence the further processes. They occur in common problem solving processes or come into existence of additional events (disturbances)."

Badke-Schaub (2012) Investigation of sources of critical situations and crucial actions and examples of negative and positive behavior.

"Different analyzed patterns of sequence:

- Critical situations that are immediately perceived and the crucial action is known to have direct solution.
- Critical situations that do not have a successful resolution might lead to other critical situations.
- Crucial actions that are not taken might lead to unsolvable critical situations.
- Crucial actions that are not taken, might be excessive or insufficient, can lead to critical situations."

Problems Existing (research) approaches analyze critical situations post-hoc, based on questionnaires and interviews :

- Effort and time need are high.
- Direct measurement of indicators is difficult.
- Analysts are perceived as disturbance variable.

Conclusion High effort for time delayed benefit \rightarrow Low efficiency \rightarrow Limited usage for operational management!

Critical situations and Crucial actions in design					
Sources	Challenges	Examples of observed	Examples of observed less		
		successful behaviour	successful behaviour		
Dosage	Adequacy	Look for essential criteria	Missing criteria		
	Balance	Make things matching	Over dosage		
Planning	Probability	Preparedness	No probability evaluation		
	Anticipation	Foreseeing opportunities	Overestimation of predictability		
Framing	Orientation	Reflected choice	Difficulty to choose		
	Focus of attention	Convergence	Stuckness		
Ambiguity	Surprise	Opportunistic procedure	Missing opportunities		
	Knowledge	Reflected analysis	Clients that do not know what		
			they want		
	Intransparency	Searching for indicators	Difficulty to grasp the features		
			of a problem		
Information	Communication	Transparent communication	Confirmation bias		
Transfer	Exchange	Awareness of the need for	"Tunnel view"		
		sharing information			
	Documentation	Keeping record of sub-	Not keeping record of sub-		
		results	results		
Interdependency	Interfaces	Awareness of the different	Acting without reference to		
		interfaces involved	others involved		
	Suspension	Take time for decisions and	Missing feeling of competence		
		keep in mind long and short			
		term consequences			
Envision	Open up solutions	Generating alternatives	Difficulty to think in the future		

Process management in practice

Qualitative overview about today's approaches and methods

Туре	Who?	Objective	Method	Objects	Rota
Strategy	"Standard processes"	Standard PDP of Series and Power train		Gateways, milestones, metrics	annually
Tactic	Management teams und project management support	Project management of single series	BPM	Gateways, milestones, metrics, topics	monthly
Operational	Boards and work groups with standard communication	Coordination of distributed development tasks, decision making or preparation	"TRCI", Task lists		weekly
	Teams with standard communication	Management of functional and geometrical maturities, decision making or preparation	Test Para	Topics, Tasks	
	Individuals (Engineers, Designers)	Management of responsible functional and geometrical maturities	lask lists		daily

- The effort for standardized processes is high.
- The information value for operational management is limited because of the highly development dynamic.
- The meaning lies on orientation and **communication**.
- Processes for new topics and innovations usually don't exist because process management is already post-hoc.
- **Topics** and **tasks** are the determining objects on the operational levels.
- The project state will primarily be measured in practice according the **maturity** level of the product.

Development of a new approach

Derivation of existing models and approaches

Basic understanding

Model approach

- Meta-model of sociotechnical systems (Naumann et. al. 2011, 2014)
- Equivalent principle and understanding of characteristics
- Comprehension of interaction and communication
 → Communication as control parameter
- Comprehension of processes

ightarrow Meaning of complexity as control parameter

- Systems engineering methods and tools
 - ightarrow Traceability as control parameter

* Characteristics are structure, function, form, material, and more.

Apply products

Basic understanding Complexity as control parameter

Sociotechnical system				
Social system Technical system				
Technical genesis				
Natural environment				

Every social system can only limitedly handle technical complexity in an organizational and procedural manner. → Identification of critical situations with complexity values.

Methodology Analysis of critical situations

Sociotechnical system Social system Technical system Technical genesis

				Sociotechnical system		
Methodology					Technical system	
Derivation of dynamic sociotechnical networks in detail					Technical genesis	
		Protocols, task lists, releases,				
Date	Content	Subtopic	Торіс	R	esp. Person	
10.02.2008	"Pedestrian protection requirement affects hood, hood height and fender."	Design impact	Pedestriar protection	n F F	Person A Person B	

Sociotechnical system

Validation Research design and data

Technical systems:

"side-mirror"

"Pedestrian protection"

Comparative longitudinal case study

- The study was embedded in a process optimization program to harmonize organization, process and IT-systems between 2010-2013.
- 4 NPD projects between 2006 and 2010
- Focusing on design phase starting with project kick off until design freeze
- Analysis of 2 topics with different complexity in a single project

Data collection

- Weekly meeting protocols (cross functional meeting to solve technical issues)
- Project status reports including vehicle design maturity level
- Log data from PDM system (exchange of CAD-documents)
- Expert interviews

Analysis (mixed method approach)

- Explorative evaluation of data, Top down codification
- Descriptive statistics
- Methodological triangulation

Results Analysis of complexity

Input for managing of organizational complexity and processes

Results

Analysis of critical situations

Input for process management and reflection

Summary Thank you for your attention

Theory of Social Systems Engineering

