Astroparticle Physics (2/3)

Nathalie PALANQUE-DELABROUILLE CEA-Saclay

CERN Summer Student Lectures, August 2008

1) What is Astroparticle Physics ? Cosmic Microwave Background Dark energy

- 2) Dark matter Evidence for dark matter Candidates and experimental status Indirect searches
- 3) High energy astrophysics

Dark matter in clusters

Gravitational lensing

HST

Luminous mass ~ 1% Gravitational mass

Rotation curves (planets)

Rotation curve of spiral galaxies

Doppler shifts across galaxy \Rightarrow velocity distribution 90% of gravitational mass is invisible (DARK HALOs)

Collision between 2 clusters (1/3)

Credit: Kitt Peak

Collision between 2 clusters (2/3)

Collision between 2 clusters (3/3)

D. Clowe et al., astro-ph/0608407, AJ 648 (2006) L109-113 Collision in 1E0657-558 = bullet cluster

Weak lensing

⇒ Mass not centered on gas ⇒ Confirmation of existence of Dark Matter

Summary of evidence

Lecture outline

- 1) What is Astroparticle Physics ? Cosmic Microwave Background Dark energy
- 2) Dark matter Evidence for dark matter Candidates and experimental status Baryonic (EROS, MACHO) Exotic (Edelweiss, DAMA) Indirect searches
- 3) High energy astrophysics

Targets (EROS, MACHO)

Event rate : ~ 1 per year per 20 million stars monitored

Magellanic clouds : 200 000 ly away (edge of halo?) (Milky Way ~ 70 000 ly in diameter)

Candidates detected (microlensing technique validated)

Neutrinos as HDM

- exist as relic from Big Bang (~ 300 cm⁻³)

- (now) known to have mass: neutrino oscillations

17

Structure formation

HDM wipes out structure on small scales

Hubble Deep Field

CDM creates too many sub-structures?

Weakly Interacting Massive Particles

Direct detection of WIMPS

If halo DM made of WIMPS ~ 500 WIMPS/m³ with v ~ 220 km/s \Rightarrow > 10 000 WIMPs/cm²/s on Earth (from $-\overline{v_{sun}}$)

Background rejection

Event by event discrimination of nuclear vs. electronic recoil

Heat + ionization Edelweiss / CDMS

Akerib et al., Phys Rev D72 (2005) 052009 22

KIMS (CsI)

Korea Invisible Mass Search

Conclusions on direct detection

Indirect detection of WIMPs

Energy loss by elastic scattering with massive bodies (halos, Earth, Sun, galactic center)

Gravitational capture + annihilation

DM searches in dense regions

GLAST (20 MeV - 300 GeV)

H.E.S.S. (E > 100 GeV)

High Energy Stereoscopic System

H.E.S.S.: Dark Matter at GC?

High Energy Stereoscopic System

v telescopes

Predicted sensitivity for ANTARES, KM3net, out of reach

