

H₂⁺ and HD⁺ spectroscopy Status and perspectives

Jean-Philippe Karr

Laboratoire Kastler Brossel (UPMC-Paris 6, ENS, CNRS, Collège de France)

Université d'Evry – Val d'Essonne

Outline

I. Introduction

H₂⁺, HD⁺ and fundamental constants

II. Theory

- Vacuum polarization at $m\alpha^{7}$ order

III. Experiment

- Results from Amsterdam:
 one-photon spectroscopy of HD+
- Towards Doppler-free
 two-photon spectroscopy of H₂⁺

Hydrogen: from atoms to molecular ions

Laser spectroscopy of H and D atoms plays a major role in the fundamental constants adjustment.

Rydberg constant R_{∞} Proton and deuteron radii

 r_p, r_d

Molecular ions H₂⁺, HD⁺: ro-vibrational transition frequencies are sensitive to the nuclear reduced mass.

Mass ratios $\mu = \frac{m_p}{m_e}, \mu_{pd} = \frac{m_d}{m_p}$

$$v_{vibr} \propto \frac{1}{\sqrt{\mu}} R_{\infty} c$$

An old idea... W.H. Wing, G.A. Ruff, W.E. Lamb Jr., J.J. Spezeski Phys. Rev. Lett. **36**, 1488 (1976)

First experimental efforts: 1997 [H. Schnitzler PhD thesis, Düsseldorf]

S. Schiller (Düsseldorf) HD+

L. Hilico (Paris) H₂⁺

J.C.J. Koelemeij, W. Ubachs (Amsterdam) HD+

T.-Y. Shi (Wuhan) HD+

Hydrogen molecular ions

Three-body molecules are simple one-electron systems: high-accuracy predictions including high-order QED corrections are possible.

Last published result: $\Delta v / v \approx 310^{-11}$

V.I. Korobov, L. Hilico, J.-Ph. Karr, PRL **112**, 103003 and PRA **89**, 032511 (2014).

Recent progress: see "Theory" part

... and V.I. Korobov's talk (Wednesday 11:00)

- Narrow ro-vibrational lines
 - H_2^+ : one-photon ro-vibrational dipole transitions *strictly* forbidden $\Delta \nu \approx 10^{-7}~Hz$ HD⁺: one-photon transitions weakly allowed $\Delta \nu \approx 10~Hz$
- High-accuracy experiments: same techniques as used in ion optical clocks lon trap, laser cooling, ultra-stable lasers, frequency comb measurements

A significantly improved determination of μ is achievable CODATA 2014: 9.5 10^{-11} [g-2 of bound electron in C⁵⁺; S. Sturm et al., Nature 2014]

Previous experimental results

One-photon spectroscopy of HD⁺

Determining μ : is it that simple?

What about the dependence on other F.C.?

$$\begin{aligned} &\mathsf{H}_{2}^{+}: \qquad \nu_{\scriptscriptstyle (v,L)\to (v',L')} \approx c R_{\scriptscriptstyle \infty} \bigg[A_{nr} \mu^{s_p} + B_{\scriptscriptstyle QED} \bigg] + \frac{R_{\scriptscriptstyle \infty}^2}{2} C_{fs}(r_p) \bigg] \qquad a_0 = \frac{\alpha}{4\pi\,R_{\scriptscriptstyle \infty}} \\ &\mathsf{HD}^{+}: \qquad \nu_{\scriptscriptstyle (v,L)\to (v',L')} \approx c R_{\scriptscriptstyle \infty} \bigg[A_{nr} \mu^{s_p} \mu^{s_d}_{pd} + B_{\scriptscriptstyle QED} \bigg] + \frac{R_{\scriptscriptstyle \infty}^2}{2} C_{fs}(r_p,r_d) \bigg] \\ &\mathsf{Ro-vibrational\ transitions:} \qquad s_p \approx -\frac{1}{2} \quad s_d \approx -\frac{1}{6} \end{aligned}$$

> Translating uncertainties on FC into uncertainties on transition frequencies

Constant	With r _p discr.	H ₂ + v=0→1	HD⁺ v=0→9
μ	9.5 10 ⁻¹¹	4.5 10 ⁻¹¹	3.3 10 ⁻¹¹
$R_{\scriptscriptstyle \infty}$	3.2 10 ⁻¹¹	3.2 10 ⁻¹¹	3.2 10 ⁻¹¹
r_p	3.9 10-2	4.9 10 ⁻¹¹	2.3 10 ⁻¹¹
$\mu_{_{pd}}$	9.3 10 ⁻¹¹	0	1.1 10 ⁻¹¹
r_d	1.2 10 ⁻³	0	4.2 10 ⁻¹²

H₂+, HD+, and fundamental constants

- In the current situation, measurement of a *single* transition would not yield a fully trustworthy determination of μ .
- But combining *several* measurements in H_2^+ and HD^+ would constrain *several* constants $(\mu, R_{\infty}, r_p...)$ and bring new data for solving the proton-radius puzzle.
- ➤ Key property : *all* ro-vibrational transitions are narrow (only 1S-2S in hydrogen atom), although they give partially redundant information.

Outline

I. Introduction

H₂⁺, HD⁺ and fundamental constants

II. Theory

- Vacuum polarization at $m\alpha^7$ order

Collaboration: V. Korobov (JINR, Dubna)

III. Experiment

- Results from Amsterdam:
 one-photon spectroscopy of HD+
- Towards Doppler-free
 two-photon spectroscopy of H₂⁺

Status of theory

 $(v = 0, L=0) \rightarrow (v'=1, L'=0)$ interval in MHz

	H_2^+	HD ⁺	
ΔE_{nr}	65 687 511.0714	57 349 439.9733	Full three-body
ΔE_{α} 4	1091.0397	958.1510	calculation
ΔE_{o} 5	-276.5450	-242.1263	carcaration
ΔE_{a6}	-1.9969	-1.7481	Adiabatic
$\Delta E_{\alpha} \tau$	0.138(2)	0.120(2)	approximation
ΔE_{α^8}	0.001(1)	0.001(1)	арргохипацоп
$\Delta E_{ m tot}$	65 688 323.708(2)	57 350 154.371(2)	3 10-11

V.I. Korobov, L. Hilico, J.-Ph. Karr, PRL **112**, 103003 and PRA **89**, 032511 (2014)

> Recent improvements

- order $m\alpha^7$: more accurate relativistic Bethe log. (one-loop self-energy)

- order $m\alpha^8$: two-loop corrections V.I. Korobov's talk

- order $m\alpha^7$: vacuum polarization (Uehling potential)

this talk

Uehling correction: leading orders $(m\alpha^5, m\alpha^6)$

$$U_{vp}(r) = -\frac{2}{3} \frac{Z\alpha}{\pi r} \int_{1}^{\infty} dt \, e^{-\frac{2r}{\alpha}t} \left(\frac{1}{t^{2}} + \frac{1}{2t^{4}}\right) \left(t^{2} - 1\right)^{1/2}$$

$$\Delta E_{a}^{vp} = \langle nl | U_{vp} | nl \rangle$$
 (1)

$$\underline{\mathsf{H(nS)}} \ \Delta E_a^{vp} = \frac{\alpha (Z\alpha)^4}{\pi n^3} \left[-\underbrace{\frac{4}{15} + \frac{5\pi}{48} (Z\alpha) - \frac{2}{7} \left(1 + \frac{1}{5n^2} \right) (Z\alpha)^2 + \frac{7\pi}{768} \left(7 + \frac{5}{n^2} \right) (Z\alpha)^3 \right]$$

HMI
$$\Delta E_a^{vp(5)} = -\frac{4\alpha^3}{15} \langle Z_1 \delta(\mathbf{r_1}) + Z_2 \delta(\mathbf{r_2}) \rangle$$
 $\Delta E_a^{vp(6)} = -\frac{5\pi\alpha^4}{48} \langle Z_1^2 \delta(\mathbf{r_1}) + Z_2^2 \delta(\mathbf{r_2}) \rangle$ V.I. Korobov, PRA **74**, 052506 (2006)

For higher-order terms, direct calculation of (1) is required.

LKB

$m\alpha^7$ order (and higher)

a) First-order contribution (leading-order terms subtracted)

$$\Delta E_a^{(7+)} = \langle \psi_0 | U_{vp} | \psi_0 \rangle - \Delta E_{vp}^{(5)} - \Delta E_{vp}^{(6)}$$

b) Relativistic correction to the wave function

$$\Delta E_b^{(7+)} = 2 \left\langle \left(H_B - \langle H_B \rangle \right) (E_0 - H)^{-1} \left(U_{vp} - \langle U_{vp} \rangle \right) \right\rangle$$

$$+ \frac{3\alpha^4}{16} \pi \left\langle \psi_0 | Z_1^2 \delta(\mathbf{r_1}) + Z_2^2 \delta(\mathbf{r_2}) | \psi_0 \right\rangle$$

c) Modification of vertex function (Darwin term)

$$\Delta E_c^{(7+)} = \langle \psi_0 | H_{vp}^{(7)} | \psi_0 \rangle - \frac{3\alpha^4}{16} \pi \left\langle \psi_0 | Z_1^2 \delta(\mathbf{r_1}) + Z_2^2 \delta(\mathbf{r_2}) | \psi_0 \right\rangle$$

 $m\alpha^6$ -order term subtracted

Spurious

Result for H(nS)
$$\Delta E_U^{(7)} = \frac{\alpha (Z\alpha)^6}{\pi n^3} \{ V_{60}(nS) + V_{61} \ln(\alpha^{-2}) \}; V_{61} = -\frac{2}{15}.$$

P.J. Mohr, PRL 34, 1050 (1975); PRA 26, 2338 (1982)

V.G. Ivanov and S.G. Karshenboim, Yad. Phys. 60, 333 (1997) [Phys. Atom. Nuclei 60, 270 (1997)]

1. Adiabatic approximation

• Clamped nuclei : electron in a two-center potential

$$V(r) = -\frac{Z_1}{r_1} - \frac{Z_2}{r_2}$$

• Exponential variational expansion

For
$$\sigma_{g}$$
 electronic states : $\psi_{0}(\mathbf{r_{1}},\mathbf{r_{2}}) = \sum_{i=1}^{N} C_{i} \left(e^{-\alpha_{i}r_{1}-\beta_{i}r_{2}} + e^{-\alpha_{i}r_{2}-\beta_{i}r_{1}} \right)$

Numerical integration using approximate form of Uehling potential

L.W. Fullerton and G.A. Rinker Jr., PRA 13, 1283 (1976)

- ightharpoonup Effective potential curve $\Delta E_{vp}^{^{(7+)}}(R)$
- ightarrow Averaging over ro-vibrational w.f. yields $\Delta E_{vp}^{(7+)}(v,L)$

2. Exact three-body approach

- First calculation of a high-order QED correction in three-body framework Provides a test of the two-center approximation.
- Full three-body Hamiltonian
- Exponential variational expansion

$$F(r_1, r_2, r_{12}) = \sum_{n=1}^{N} \left(C_n \operatorname{Re} \left(e^{-\alpha_n r_1 - \beta_n r_2 - \gamma_n r_{12}} \right) + D_n \operatorname{Im} \left(e^{-\alpha_n r_1 - \beta_n r_2 - \gamma_n r_{12}} \right) \right)$$

• Analytical integration: matrix elements of the Uehling potential in exponential basis set are known in analytical form.

J.-Ph. Karr and L. Hilico, PRA 87, 012506 (2013)

Results (nonlogarithmic term)

H ₂ ⁺	HD ⁺
<u></u>	

	2-center	3-body
v=0 , $L=0$	-28.35	-31.64
v = 1, $L = 0$	-27.93	-30.67
trans.	0.42	0.97

2-center	3-body
-28.38	-32.69
-28.01	-31.04
0.37	0.75

Unit:

2-center calculation: J.-Ph. Karr, L. Hilico, V.I. Korobov, PRA 90, 062516 (2014).

- \triangleright Discrepancy: \sim 3.3 (4.3) kHz for H₂⁺ (HD⁺) ground states
- > Second-order contribution in the adiabatic approximation:

$$\Delta E_{b} = 2 \sum_{exc.\sigma_{o}} \frac{\langle \psi_{0} | H_{B} | \psi_{n} \rangle \langle \psi_{n} | U_{vp} | \psi_{0} \rangle}{E_{0} - E_{n}}$$

The contribution from *vibrational excitations* is missing! Numerical evaluation : \sim -4.6 kHz for v=0.

Outline

I. Introduction

H₂⁺, HD⁺ and fundamental constants

II. Theory

- Vacuum polarization at $m\alpha^7$ order

III. Experiment

Results from Amsterdam:
 one-photon spectroscopy of HD⁺

Towards Doppler-free
 two-photon spectroscopy of H₂⁺

HD+ spectroscopy in Amsterdam

J. Bisheuvel, K.S.E Eikema, W. Ubachs, J.C.J. Koelemeij *LaserLaB, Amsterdam VU*

J.P.K., L. Hilico *LKB, Paris*(systematic shifts, MD simulations)

J. Biesheuvel, J.-Ph. Karr, L. Hilico, K.S.E. Eikema, W. Ubachs, J.C.J. Koelemeij (submitted)

LKB

Experimental methods

Linear RF trap

313 nm

- Laser-cooled Be⁺ ions (313 nm)
- Weakly confining ($\omega_{\text{Be+}} = 2\pi \times 0.3 \text{ MHz}$)
- Load HD⁺ by e-impact ionization, sympathetic cooling to ~10 mK
- Typically 750 Be+, 40 85 HD+

Experimental methods

Experimental sequence

Signal = fractional loss of ions $(A_f - A_i)/A_i$

Data and analysis

<u>Data analysis</u>: Rate equation model with all timedependent effects realistically included:

- REMPD (Doppler-broadened line shape)
- Background collisions (e.g. $HD^+ + H_2 \rightarrow H_2D^+ + H$)
- Population recycling by BBR

Uncertainty budget and result

Origin	Shift	Uncertainty	
	(MHz)	(MHz)	(p.p.b)
Resolution (statistical fit error)	0	0.33	0.85
Doppler effect due to chemistry	-0.25*	0.25	0.66
Ignoring population L=6 in rate equations	0	0.032	0.083
Doppler effect due to micromotion	-0.055*	0.020	0.052
Frequency measurement	0	0.010	0.026
BBR temperature	0	0.005	0.013
Zeeman effect	-0.0169	0.003	0.008
Stark effect	-0.0013	0.0001	0.0004
Electric-quadrupole shift	0†	0.0001	0.0003
2 nd -order Doppler effect	0†	0.000005	0.00001
Total	-0.0182	0.41	1.1

Experiment: 383 407 177.38(41) MHz

Theory: 383 407 177.150(15) MHz

Doppler effect due to chemistry

- ▶ Photodissociation of HD⁺, and observed reactions with background H₂, produces hot ions (2000 to 5000 K!) which will exchange energy with the laser-cooled ion crystal.
- > Realistic MD simulations reveal non-Maxwell-Boltzmann distributions.
- Combined with saturation effects and overlapping lines: significant line shift
- Precise knowledge of the velocity distribution during REMPD would require determining the thermalization time (huge simulation effort).
- > Upper/lower limits on the thermalization time lead to limits on the line shift.

Effect on line position ~ -0.25(25) MHz

Comparison with theory

First determination of μ from molecular vibrations

Other outcome: constraints on deviations from Coulomb law

See W. Ubachs' talk

The H₂⁺ experiment in Paris

J. Heinrich, N. Sillitoe, A. Douillet, JPK, L. Hilico *LKB, Paris*

Eliminate Doppler broadening: **Doppler-free two-photon transition**

- Linear rf ion trap, sympathetic cooling by laser-cooled Be⁺
- Ultra-stable Quantum Cascade Laser (QCL) at 9.17 μm
 In-vacuum enhancement cavity for the two-photon transition
- Loading of H₂⁺ by e⁻ impact ionization: insufficient!
 Long-lived states → not enough population in (v=0,L=2)
 Production in selected state by resonant multiphoton ionization (REMPI)

Ion trap and vacuum vessel

313 nm lasers for Be+ cooling

➤ Low-cost sources for Doppler cooling

- ✓ Master and slave lasers mounted and operated
- ✓ DBR DL locked on I₂ saturated absorption line @ 626.26 nm
- ✓ Compact SHG cavity design by Amsterdam group (F. Cozijn, J. Koelemeij)
- ➤ **High-power source** for Raman sideband cooling

GBAR talk

PPLN crystal in oven

SHG cavity

H₂⁺ ion source

- Fabrication in progress
- Other option to be tested: in-situ creation with pulsed H₂ beam
- Ion injection from an external source is useful to "simulate" GBAR!

Expected performances

- ➤ Linewidth
 - limited by the spectral width of the laser source (no Doppler broadening)
 i.e. currently ~ 2-3 kHz
- ➤ Signal-to-noise ratio
 - The number of ions could be higher than in HD⁺ experiment
 - REMPI creates 90% of the ions in the desired ro-vibrational state
- > Frequency measurement
 - current setup HCOOH/CO₂ "secondary" standard, accuracy limit ~ 1 kHz (3 10⁻¹¹)
 - to be implemented: frequency comb measurements in the 9 μm range

LKB

Conclusions

- The vacuum polarization (Uehling) $m\alpha^7$ -order correction has been calculated. Comparison of 2-center and 3-body approaches questions the accuracy of the adiabatic approach.
- ightharpoonup Measurement of the (0,2) ightharpoonup (8,3) one-photon transition in HD⁺ by the Amsterdam group.
 - agreement with theory at the 1 ppb level
 - determination of μ with 2.9 ppb accuracy
- Doppler-free two-photon spectroscopy is being prepared
 - $(0,2) \rightarrow (1,2)$ in H_2^+ (Paris)
 - (0,3) → (9,3) in HD⁺ (Amsterdam) with non-degenerate photons V.Q. Tran, J.-Ph. Karr, A. Douillet, J.C.J. Koelemeij, L. Hilico, PRA **88**, 033421 (2013)
- \triangleright Combined measurements in H₂⁺ and HD⁺ can lead to improve the determination of several fundamental constants : μ , R_{∞} , r_p ...

Acknowledgements

Paris

Johannes Heinrich Nicolas Sillitoe Albane Douillet Laurent Hilico

Dubna

Amsterdam

Juriaan Biesheuvel
Sayan Patra
Frank Cozijn
Kjeld Eikema
Wim Ubachs
Jeroen Koelemeij

Thank you!

