## BEYOND THE PROTON RADIUS

WHAT ELSE CAN MUONIC HYDROGEN TELL US ABOUT THE PROTON?

Vladimir Pascalutsa

Institute for Nuclear Physics, PRISMA Cluster of Excellence University of Mainz, Germany



@ Intl Conference on Precision Physics ... (FFK-2015)
 Budapest, Hungary, Oct 12–16, 2015

### Outline



#### Proton Radius Puzzle

#### Expansion in Radii

Oelta(1232)-resonance and proton deformation Compton scattering and proton polarizabilities

Polarizability contribution to the Lamb shift in Chiral Perturbation Theory

# Muonic hydrogen theory and experiment

CREMA Collaboration, Nature (2010); Science (2013)



lutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015





5

# radition the set on the transferring



$$\begin{split} &\operatorname{Im} T_{1}(\nu,Q^{2}) Q^{2} = -(k'-k) \\ &\operatorname{Im} T_{1}(\nu,Q^{2}) Q^{2} = \frac{Q_{\pi^{2}\alpha}^{2} - (k'-k)}{\overline{x} + Q^{2}} = \nu \sigma_{T}(\nu,Q^{2}), \\ &\operatorname{Im} T_{2}(\nu,Q^{2}) x = \frac{4\pi^{2}\alpha}{\nu} Q^{2} / (2M_{N}\nu) \\ &\operatorname{Im} S_{1}(\nu,Q^{2}) x = \frac{4\pi^{2}\alpha}{\nu} (Q^{2}(M_{\mu}Q^{2})) = \frac{Q^{2}\nu}{\nu^{2} + Q^{2}} [\sigma_{T} + \sigma_{L}](\nu,Q^{2}), \\ &\operatorname{Im} S_{1}(\nu,Q^{2}) = \frac{4\pi^{2}\alpha}{\nu} (Q^{2}(M_{\mu}Q^{2})) = \frac{1}{\nu^{2} + Q^{2}} [\sigma_{T} + \sigma_{L}](\nu,Q^{2}), \\ &\operatorname{Im} S_{2}(\nu,Q^{2}) = \frac{1}{2} (\frac{4\pi^{2}\alpha}{\nu^{2}} Q^{2}), \\ & g_{1}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu^{2} + Q^{2}} [\rho_{L}^{2} + Q^{2}] [\nu,Q^{2}), \\ & g_{1}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu^{2} + Q^{2}} [\rho_{L}^{2} + Q^{2}] [\nu,Q^{2}), \\ & g_{1}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu^{2} + Q^{2}} [\rho_{L}^{2} + Q^{2}] [\nu,Q^{2}), \\ & g_{2}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu^{2} + Q^{2}} [\rho_{L}^{2} + Q^{2}] [\nu,Q^{2}), \\ & g_{2}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu^{2} + Q^{2}} [\rho_{L}^{2} + Q^{2}] [\nu,Q^{2}), \\ & g_{2}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu^{2} + Q^{2}} [\rho_{L}^{2} + Q^{2}] [\rho_{L}^{2} + Q^{2}] [\nu,Q^{2}), \\ & g_{2}(\nu,Q^{2}) = \frac{1}{\nu^{2}} (\rho_{L}^{2} + Q^{2}) = \frac{1}{\nu$$

These unitarity relations hold in the physical region, where the Bjorken variable is unit interval:  $x \in [0, 1]$ .

(i) Elastic part given averson averson

The structure functions describing the purely elastic scattering are given in term  $f_1^{\rm el}(\nu, Q^2) = \frac{1}{2}G_M^2(Q^2)\,\delta(1-x),$ 

$$\begin{split} f_{2}^{\mathrm{el}}(\nu,Q^{2}) & f_{1}^{\mathrm{el}}(\underline{\nu},Q^{2}) \stackrel{1}{=} \frac{1}{2} G_{1E}^{2}(Q^{2}) \stackrel{\delta(1-x)}{=} \tau G_{M}^{2}(Q^{2}) \left[ \delta(1-x), \right. \\ & \left. f_{2}^{\mathrm{el}}(\nu,Q^{2}) \stackrel{1}{=} \tau \frac{1}{2} F_{1}(Q^{2}) \stackrel{\delta(1-x)}{=} \left. f_{2}^{\mathrm{el}}(Q^{2}) \stackrel{\delta(1-x)}{=} \tau \frac{1}{2} F_{1}(Q^{2}) \stackrel{\delta(1-x)}{=} \left. f_{2}^{\mathrm{el}}(Q^{2}) \stackrel{\delta(1-x)}{=} \left. f_{2}^{\mathrm{el}}(Q^{2}) \stackrel{\delta(1-x)}{=} \right] \right. \\ & \left. g_{1}^{\mathrm{el}}(\nu,Q^{2}) \stackrel{e}{=} \tau \frac{1}{2} F_{1}(Q^{2}) \stackrel{\delta(1-x)}{=} \left. f_{2}^{\mathrm{el}}(Q^{2}) \stackrel{\delta(1-x)}{=} \right] \right. \\ & \left. g_{2}^{\mathrm{el}}(\nu,Q^{2}) \stackrel{g}{=} \tau \frac{1}{2} F_{2}(Q^{2}) \stackrel{\delta(1-x)}{=} \left. f_{2}^{\mathrm{el}}(Q^{2}) \stackrel{\delta(1-x)}{=} \right] \right. \\ & \left. g_{2}^{\mathrm{el}}(\nu,Q^{2}) \stackrel{g}{=} \tau \frac{1}{2} \frac{$$

where  $Q^{\neq}/4MQ^{2}and M_{E}(Q^{2}and G_{M}Q^{2}Q^{2}and G_{M}Q^{2}Q^{2}and G_{M}Q^{2}Q^{2}and G_{M}Q^{2}and G_{$ 

$$G_F = F_1 + \tau F_2, \quad G_M = F_1 + F_2.$$

### Proton Form Factors and RMS Radii

FF interpretation: Fourier transforms of charge and magnetization distributions

$$\rho(r) = \int \frac{\mathrm{d}\boldsymbol{q}}{(2\pi)^3} G(\boldsymbol{q}^2) e^{-i\boldsymbol{q}\boldsymbol{r}}$$

$$G_E(Q^2) = 1 - \frac{1}{6} R_E^2 Q^2 + \cdots$$

root-mean-square (rms) charge radius:  

$$R_E = \sqrt{\langle r^2 \rangle_E}$$

$$\langle r^2 \rangle_E \equiv \int d\mathbf{r} \, r^2 \, \rho_E(\mathbf{r}) = -6 \frac{d}{dQ^2} G_E(Q^2) \Big|_{Q^2=0}$$

 $R_E = 0.879(5)_{\text{stat}}(4)_{\text{syst}}(2)_{\text{model}}(4)_{\text{group}} \text{ fm},$   $R_M = 0.777(13)_{\text{stat}}(9)_{\text{syst}}(5)_{\text{model}}(2)_{\text{group}} \text{ fm}.$ J. C. Bernauer *et al.*, Phys. Rev. C**90**,015206 (2014).



#### Proton Radius — Historical Perspective History of proton rms charge radius



#### Current status of RE and RM of the proton Present Status



[5] J. C. Bernauer *et al.*, Phys. Rev. C**90**,015206 (2014).

#### Muonic hydrogen more sensitive to proton structure





$$\Delta E_{\rm HFS}^{\rm exp} = 22.8089(51) \,\mathrm{meV}$$
  

$$\Delta E_{\rm HFS}^{\rm th} = 22.9763(15) - 0.1621(10) \left(R_Z/\mathrm{fm}\right) + \Delta E_{\rm HFS}^{\rm (pol)}$$
  
Zemach radius:  $R_Z = -\frac{4}{\pi} \int_0^\infty \frac{\mathrm{d}Q}{Q^2} \left[ \frac{G_E(Q^2)G_M(Q^2)}{1+\varkappa} - 1 \right]$ 

from 2S HFS: 1.082(37) [fm]

### Muonic Hydrogen Lamb shift

 $\Delta E_{\rm LS}^{\rm th} = 206.0668(25) - 5.2275(10) \, (R_E/{\rm fm})^2$ 

theory uncertainty:  $2.5 \,\mu eV$ 

numerical values reviewed in: A. Antognini *et al.*, Annals Phys. **331**, 127-145 (2013).



#### 0.000.0J0.10 $\mathbf{0.1J}$ $\mathbf{0.20}$ $\mathbf{U}$ 0.50

### Lame (Servisit in terms of VVCS amplitudes



 $\Delta E_{nS}^{(\text{pol})}$ 

$$= -4\alpha_{em}\phi_n^2 \int_0^\infty \frac{dQ}{Q^2} w \left(Q^2/4m_\ell^2\right) \left[T_2^{(\text{NB})}(0,Q^2) - T_1^{(\text{NB})}(0,Q^2)\right]$$

empirically known

where unpolarized, **forward** Doubly-Virtual Compton scattering (VVCS) amplitude:

$$T^{\mu\nu}(p,q) = \frac{i}{8\pi M} \int d^4x \, e^{iqx} \langle p|Tj^{\mu}(x)j^{\nu}(0)|p\rangle$$
  
=  $\left(-g^{\mu\nu} + \frac{q^{\mu}q^{\nu}}{q^2}\right) T_1(\nu,Q^2)$   
+  $\frac{1}{M^2} \left(p^{\mu} - \frac{p \cdot q}{q^2}q^{\mu}\right) \left(p^{\nu} - \frac{p \cdot q}{q^2}q^{\nu}\right) T_2(\nu,Q^2)$ 

NB stands for non-Born, i.e. w/o elastic FFs  $T_1^{(\rm NB)}(0,Q^2) \simeq Q^2 \beta_{M1}$  $T_2^{(\text{NB})}(0,Q^2) \simeq Q^2(\alpha_{E1} + \beta_{M1}), \text{ for low } Q$ 



 $\phi_n^2(0) = m_r^3 \alpha^3 / (\pi n^3)$ 

 $Q^2$ )

### Status of proton polarizabilities





### Polarizability contribution in ChPT

Eur. Phys. J. C (2014) 74:2852 DOI 10.1140/epjc/s10052-014-2852-0 THE EUROPEAN PHYSICAL JOURNAL C

**Regular Article - Theoretical Physics** 

#### Chiral perturbation theory of muonic-hydrogen Lamb shift: polarizability contribution

#### Jose Manuel Alarcón<sup>1,a</sup>, Vadim Lensky<sup>2,3</sup>, Vladimir Pascalutsa<sup>1</sup>

<sup>1</sup> Cluster of Excellence PRISMA Institut für Kernphysik, Johannes Gutenberg-Universität, Mainz 55099, Germany

<sup>2</sup> Theoretical Physics Group, School of Physics and Astronomy, University of Manchester, Manchester M13 9PL, UK

<sup>3</sup> Institute for Theoretical and Experimental Physics, Bol'shaya Cheremushkinskaya 25, 117218 Moscow, Russia



### Proton polarizability effect in mu-H

|                                   | Heavy-Baryon<br>(HB)ChPT |                 |                           |                                |                            | [Alarcon,<br>Lensky & VP,<br>EPJC (2014)] |                        |
|-----------------------------------|--------------------------|-----------------|---------------------------|--------------------------------|----------------------------|-------------------------------------------|------------------------|
| (μeV)                             | Pachucki [9]             | Martynenko [10] | Nevado and<br>Pineda [11] | Carlson and Vanderhaeghen [12] | Birse and<br>McGovern [13] | Gorchtein et al. [14]                     | LO-BχPT<br>[this work] |
| $\Delta E_{2S}^{(\mathrm{subt})}$ | 1.8                      | 2.3             | _                         | 5.3 (1.9)                      | 4.2 (1.0)                  | $-2.3 (4.6)^{a}$                          | -3.0                   |
| $\Delta E_{2S}^{(\text{inel})}$   | -13.9                    | -13.8           | _                         | -12.7 (5)                      | -12.7 (5) <sup>b</sup>     | -13.0 (6)                                 | -5.2                   |
| $\Delta E_{2S}^{(\text{pol})}$    | -12 (2)                  | -11.5           | -18.5                     | -7.4 (2.4)                     | -8.5 (1.1)                 | -15.3 (5.6)                               | $-8.2(^{+1.2}_{-2.5})$ |

<sup>a</sup> Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the 'elastic' and 'polarizability' contributions <sup>b</sup> Taken from Ref. [12]

- [9] K. Pachucki, Phys. Rev. A 60, 3593 (1999).
- [10] A. P. Martynenko, Phys. Atom. Nucl. 69, 1309 (2006).
- [11] D. Nevado and A. Pineda, Phys. Rev. C 77, 035202 (2008).
- [12] C. E. Carlson and M. Vanderhaeghen, Phys. Rev. A 84, 020102 (2011).
- [13] M. C. Birse and J. A. McGovern, Eur. Phys. J. A 48, 120 (2012).
- [14] M. Gorchtein, F. J. Llanes-Estrada and A. P. Szczepaniak, Phys. Rev. A 87, 052501 (2013).

$$\Delta E_{2S}^{(\text{pol})}(\text{LO-HB}\chi\text{PT}) \approx \frac{\alpha_{\text{em}}^5 m_r^3 g_A^2}{4(4\pi f_\pi)^2} \frac{m_\mu}{m_\pi} (1 - 10G + 6\log 2) = -16.1 \ \mu\text{eV}, \quad G \simeq 0.9160 \text{ is the Catalan constant.}$$

### ChPT of Compton scattering off protons





### Unpolarized cross sections for RCS



Vladimir Pascalutsa — Beyond the proton radius — FKK-15 — Budapest, Oct 13, 2015

#### Proton polarizabilities



Vladimir Pascalutsa — Beyond the proton radius — FKK-15 — Budapest, Oct 13, 2015

### Predictions of BChPT for VVCS

#### Alarcon, Lensky & VP, PRC (2014)



### BChPT for polarised VVCS (deltaLT puzzle)

#### Alarcon, Lensky & VP, PRC (2014)



### HFS calculation in ChPT

Hagelstein & V.P., in progress



### Delta(1232) and proton deformation



Physica 96A (1979) 27-30 © North-Holland Publishing Co.

#### THE UNMELLISONANT QUARK

#### SHELDON L. GLASHOW\*

#### Quadrupole N-> Delta transitions signatures of nucleon deformation

### Proton radius puzzle: possible explanations



Beyond Standard Model

### Summary

#### **Polarizability contribution to mu-H Lamb shift**



#### **Polarizability contribution to mu-H 2S HFS**



#### mu-H HFS yields access to magnetisation distr. and deformation of the proton

Vladimir Pascalutsa — Beyond the proton radius — FKK-15 — Budapest, Oct 13, 2015

#### Collaborators

Franziska Hagelstein (Mainz)

Jose Alarcon (Bonn) Vadim Lensky (Mainz)

Judith McGovern (Manchester) Marc Vanderhaeghen (Mainz)

# Backup slides

#### UV dependence in HB- vs B-ChPT



$$M_N \sim m_\pi^3$$
$$\kappa \sim m_\pi$$
$$\beta_M \sim \frac{1}{m_\pi}$$

Heavy-Baryon expansion fails for quantities where the leading chiral-loop effects scales with a negative power of pion mass

E.g.: the effective range parameters of the NN force are such quantities -- hope for "perturbative pions" (KSW) in BChPT

#### From beam asymmetry

#### PRL 110, 262001 (2013) PHYSICAL REVIEW LETTERS

week ending 28 JUNE 2013

#### Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa

PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany (Received 3 April 2013; published 25 June 2013)



Vladimir Pascalutsa — A few moments in ChPT — Workshop on Tagged Structure Functions — JLab, Jan 16-18, 2014 28

### New Mainz data for Compton beam asymmetry

Data taken: 28.05. – 17.06.2013, 327 h



### Predictions of HBChPT vs BChPT



Vladimir Pascalutsa — Beyond the proton radius — FKK-15 — Budapest, Oct 13, 2015