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More on n=2 for muonic hydrogen:
Lamb shift dominated by vacuum polarization, drops 
2S state by a lot 

First published data was 
for  2S F=1 to 2P3/2 F=2 
level       (F is total 
angular momentum)
HFS enters a bit since 
2S F=1 displaced up by 
1/4 of HFS

206 meV

F=2
F=1

F=1
F=0
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F=0

finite size effect
3.7 meV HFS  23 meV

FS 8.4 meV
2P3/2 

2P1/2

2S1/2
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Summary of polarizability in muonic hydrogen
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2S shift

2S HFS

Figure 3 shows the two measured mp res-
onances. Details of the data analysis are given
in (12). The laser frequency was changed every
few hours, and we accumulated data for up to
13 hours per laser frequency. The laser frequen-
cy was calibrated [supplement in (6)] by using
well-known water absorption lines. The reso-
nance positions corrected for laser intensity ef-
fects using the line shape model (12) are

ns ¼ 54611:16(1:00)stat(30)sysGHz ð2Þ

nt ¼ 49881:35(57)stat(30)sysGHz ð3Þ

where “stat” and “sys” indicate statistical and sys-
tematic uncertainties, giving total experimental un-
certainties of 1.05 and 0.65 GHz, respectively.
Although extracted from the same data, the fre-
quency value of the triplet resonance, nt, is slightly
more accurate than in (6) owing to several improve-
ments in the data analysis. The fitted line widths
are 20.0(3.6) and 15.9(2.4) GHz, respectively, com-
patible with the expected 19.0 GHz resulting from
the laser bandwidth (1.75 GHz at full width at half
maximum) and the Doppler broadening (1 GHz)
of the 18.6-GHz natural line width.

The systematic uncertainty of each measure-
ment is 300 MHz, given by the frequency cal-
ibration uncertainty arising from pulse-to-pulse
fluctuations in the laser and from broadening
effects occurring in the Raman process. Other
systematic corrections we have considered are
the Zeeman shift in the 5-T field (<60 MHz),
AC and DC Stark shifts (<1 MHz), Doppler
shift (<1 MHz), pressure shift (<2 MHz), and
black-body radiation shift (<<1 MHz). All these
typically important atomic spectroscopy system-
atics are small because of the small size of mp.

The Lamb shift and the hyperfine splitting.
From these two transition measurements, we
can independently deduce both the Lamb shift
(DEL = DE2P1/2−2S1/2) and the 2S-HFS splitting
(DEHFS) by the linear combinations (13)

1
4
hns þ

3
4
hnt ¼ DEL þ 8:8123ð2ÞmeV

hns − hnt ¼ DEHFS − 3:2480ð2ÞmeV ð4Þ

Finite size effects are included in DEL and
DEHFS. The numerical terms include the cal-
culated values of the 2P fine structure, the 2P3/2
hyperfine splitting, and the mixing of the 2P
states (14–18). The finite proton size effects on
the 2P fine and hyperfine structure are smaller
than 1 × 10−4 meV because of the small overlap
between the 2P wave functions and the nu-
cleus. Thus, their uncertainties arising from
the proton structure are negligible. By using
the measured transition frequencies ns and nt
in Eqs. 4, we obtain (1 meV corresponds to
241.79893 GHz)

DEexp
L ¼ 202:3706(23) meV ð5Þ

DEexp
HFS ¼ 22:8089(51) meV ð6Þ

The uncertainties result from quadratically
adding the statistical and systematic uncertain-
ties of ns and nt.

The charge radius. The theory (14, 16–22)
relating the Lamb shift to rE yields (13):

DEth
L ¼ 206:0336(15Þ − 5:2275(10Þr2E þ DETPE

ð7Þ

where E is in meV and rE is the root mean
square (RMS) charge radius given in fm and
defined as rE

2 = ∫d3r r2 rE(r) with rE being the
normalized proton charge distribution. The first
term on the right side of Eq. 7 accounts for
radiative, relativistic, and recoil effects. Fine and
hyperfine corrections are absent here as a con-
sequence of Eqs. 4. The other terms arise from
the proton structure. The leading finite size effect
−5.2275(10)rE2 meV is approximately given by
Eq. 1 with corrections given in (13, 17, 18).
Two-photon exchange (TPE) effects, including the
proton polarizability, are covered by the term
DETPE = 0.0332(20) meV (19, 24–26). Issues
related with TPE are discussed in (12, 13).

The comparison of DEth
L (Eq. 7) with DEexp

L
(Eq. 5) yields

rE ¼ 0:84087(26)exp(29)th fm
¼ 0:84087(39) fm ð8Þ

This rE value is compatible with our pre-
vious mp result (6), but 1.7 times more precise,
and is now independent of the theoretical pre-
diction of the 2S-HFS. Although an order of
magnitude more precise, the mp-derived proton
radius is at 7s variance with the CODATA-2010
(7) value of rE = 0.8775(51) fm based on H spec-
troscopy and electron-proton scattering.

Magnetic and Zemach radii. The theoretical
prediction (17, 18, 27–29) of the 2S-HFS is (13)

DEth
HFS ¼ 22:9763(15Þ − 0:1621(10)rZ þ DEpol

HFS

ð9Þ

where E is in meVand rZ is in fm. The first term is
the Fermi energy arising from the interaction
between the muon and the proton magnetic mo-
ments, corrected for radiative and recoil con-
tributions, and includes a small dependence of
−0.0022rE2 meV = −0.0016 meVon the charge
radius (13).

The leading proton structure term depends
on rZ, defined as

rZ ¼ ∫d3r∫d3r′r′rE(r)rM(r − r′) ð10Þ

with rM being the normalized proton mag-
netic moment distribution. The HFS polariz-

Fig. 1. (A) Formation of mp in highly excited states and subsequent cascade with emission of “prompt”
Ka, b, g. (B) Laser excitation of the 2S-2P transition with subsequent decay to the ground state with Ka
emission. (C) 2S and 2P energy levels. The measured transitions ns and nt are indicated together with
the Lamb shift, 2S-HFS, and 2P-fine and hyperfine splitting.

25 JANUARY 2013 VOL 339 SCIENCE www.sciencemag.org418

RESEARCH ARTICLES

CREMA Collaboration, Nature (2010); Science (2013)



Vladimir Pascalutsa — Nucleon at Very Low Q — NStar 2015 — Osaka, May 25-2, 2015

Proton radius puzzle

5

[RCODATA 2010
E = 0.8775(51) fm]

7σ discrepancy
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Then came a problem
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The proton radius puzzle

Measure the 2S − 2P splitting in µp

↓

determine the proton rms radius rp
(10× better )

But large discrepancy observed:
• 4σ from H spectroscopy value
• 6σ from e-proton scattering value

A. Antognini
MPQ, Garching, Germany
ETH, Zurich, Switzerland

A. Antognini, PANIC11, MIT, Cambridge, USA 25.07.2011 – p.1
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Traditional probe of  the Proton 
— electron scatteringIntroduction

(i) Elastic part given by form factors
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3.2. Relation to Structure Functions
The optical theorem relates the absorptive parts of the forward VVCS amplitudes to the nucleon

structure functions, or equivalently, the cross sections of virtual-photon absorption �⇤N ! X: 7
eq:VVCSunitarity
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These unitarity relations hold in the physical region, where the Bjorken variable is confined to the
unit interval: x 2 [0, 1].

The structure functions describing the purely elastic scattering are given in terms of the elastic
FFs:eq:elstructure

f el
1 (⌫, Q

2) = 1
2G

2
M(Q2) �(1 � x), (3.6a)

f el
2 (⌫, Q
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E(Q
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2F1(Q

2)GM(Q2) �(1 � x), (3.6c)
gel
2 (⌫, Q

2) = �1
2⌧F2(Q

2)GM(Q2) �(1 � x), (3.6d)

where ⌧ = Q2/4M2 and GE(Q2), GM(Q2) are the Sachs FFs,

GE = F1 + ⌧F2, GM = F1 + F2. (3.7)

Furthermore, � is the Dirac delta-function, such that

�(1 � x) = ⌫el �(⌫ � ⌫el), with ⌫el = Q2/2M = 2M⌧. (3.8)

In the asymptotic limit, Q2 ! 1, and fixed x, the structure functions are related to the parton
distribution functions. We are, however, interested in the limit where Q and ⌫ are small. In this case
the VVCS amplitudes can on one hand be expanded in terms of polarizabilities and electromagnetic
radii, and on the other in terms of moments of structure functions. This expansion and the resulting
relations between the static electromagnetic properties of the nucleon and the moments of structure
functions will be discussed further below. Before that, we need to establish the dispersion relations
for the forward VVCS amplitudes.

3.3. Analyticity and Dispersion Relations
Consider the analytic structure the VVCS amplitudes Ti and Si in the complex plane of ⌫. We

have already seen that the Born contribution contains the nucleon pole at the kinematics of elastic
scattering, ⌫el = Q2/2M . The inelastic particle-production processes are manifested in the branch
cuts, starting the at first threshold ⌫0 and extending to infinity. Neglecting the higher-order in ↵

7The definition of the flux factor for the virtual photons, which goes into the definitions of these cross sections, is
rather arbitrary. Our expressions correspond with a choice, and as the result these relations may differ in the literature
by an overall factor. The observable quantities will not be affected by this.
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rather arbitrary. Our expressions correspond with a choice, and as the result these relations may differ in the literature
by an overall factor. The observable quantities will not be affected by this.
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2) moments of the inelastic structure functions related to polarizabilities

1) elastic part given by form factors 
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which is effectively point to point, reflected by the
error scaling, and a part which behaves systematically
as a function of the angle. The latter is estimated to be
below 0.1%.

(vi) The background estimation. Depending on the size of
the background below the elastic hydrogen peak this
error is estimated to be between 0.1% and 0.5%.

While the first point can be tested directly by fitting data
with varied cut-off energy, the other uncertainties have to be
treated by hand. To this end the cross sections are grouped
by the energy and by the spectrometer with which they are
measured. For each group, we define a linear function c(θ ) =
a(θ − θmin) interpolating from 0 for the smallest scattering
angle to the full estimated uncertainty at the maximum angle of
the group. The cross sections are then multiplied by 1 + c(θ ).
The sign of a was kept constant for all energies. The so-
modified cross sections were then refitted with the form-factor
models. In order to determine an upper and a lower bound
the fits were repeated with negated a. The uncertainties found
in this way are added quadratically to the uncertainties from
the radiative tail cutoff. The choice of a linear function in θ is
certainly arbitrary, but we checked several different reasonable
functional dependencies on θ and Q2, e.g., imitating the effect
of a spectrometer angle offset or target position offset. They
all produced similar results. The so-determined uncertainties
are reflected by the experimental systematic confidence bands
presented in this paper.

A possible source of uncertainty not from data but from
theory are the radiative corrections. The absolute value of the
radiative corrections should already be correct to better than
1% and a constant error in the correction will be absorbed
in the normalization. Any slope introduced as a function of
θ or Q2 by the radiation correction will be contained in the
slope-uncertainty discussed above up to a negligible residual;
it is therefore not considered.

In order to evaluate the influence of the applied Coulomb
correction, the amplitude of the correction was varied by
±50%. The so-modified cross sections are refitted with the
different models. The differences of the extracted form factors
to the results for the data with the unmodified correction are
shown as a band in Fig. 10.

Except for the phenomenological TPE model included in
the fit to the full data set, we do not include any theoretical
correction of the hard two-photon exchange to the cross sec-
tions in our analysis but apply Feshbach’s Coulomb correction.
Published Rosenbluth data normally do not include a Coulomb
correction. This has to be considered for comparisons of our
fits with old Rosenbluth separations.

3. Model dependence

An important issue is the question of whether the form-
factor functions are sufficiently flexible to be a suitable
estimator for the unknown true curve or whether they introduce
any bias, especially in the extraction of the radius. We have
studied this problem in two ways.

First, we used a Monte Carlo technique similar to the
method described in Sec. V D 1. We analyzed Monte Carlo
data sets produced at the kinematics of the data of the
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FIG. 10. (Color) The form factors GE and GM , normalized to the
standard dipole, and GE/GM as a function of Q2. Black line: Best fit
to the new Mainz data; blue area: statistical 68% pointwise confidence
band; light blue area: experimental systematic error; green outer band:
variation of the Coulomb correction by ±50%. The different data
points depict the previous measurements [2,4,43–45,47,48,50,53,55–
57,60,67,68,87–91] as in Refs. [2,4] with the data points of
Refs. [16,64,92] added.
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Figure 1
Proton radius determinations over time. Electronic measurements seem to settle around rp = 0.88 fm,
whereas the muonic hydrogen value (1) is 0.84 fm. (Left to right) Values from Orsay (10), Stanford (11),
Saskatoon (12, 13), and Mainz (14) (all in blue) are early electron scattering measurements. Recent scattering
measurements are from MAMI (4) and JLab (32). The green points denote various reanalyses of the world
electron scattering data ( from left to right: References 18, 39, 25, 15, 38, and 41). The red symbols represent
data originating from laser spectroscopy of atomic hydrogen and advances in hydrogen QED theory (see
Reference 3 and references therein). The world data from both electron scattering and hydrogen and
deuterium spectroscopy have determined the value of rp in the CODATA adjustments (3, 16) since the 2002
edition.

transition in hydrogen has been measured with an accuracy of four parts in 1015 (20). Other
transitions, especially the two-photon transitions between the metastable 2S state and the 8S,D
(21) or 12D (22) state, have been measured with accuracies around one part in 1011. For a review
of the relevant transition frequencies in hydrogen and deuterium, see Reference 3.

QED describes the energy levels of hydrogen with extraordinary accuracy. The test of QED
that uses measured transition frequencies in hydrogen is limited by two input parameters required
in QED calculations, namely the Rydberg constant, R∞, and the root-mean-square proton radius,
rp . Thus, one can either supply any of these two numbers from a source other than hydrogen
spectroscopy (such as rp from elastic electron–proton scattering or muonic hydrogen), and then
test the correctness of QED, or use QED to extract the fundamental constants R∞ and rp .

Somewhat simplified, the energies of S-states in hydrogen are given by

E(nS) ≃ − R∞

n2 + L1S

n3 , 4.

where n is the principal quantum number and L1S denotes the Lamb shift of the 1S ground state,
which is given by QED and contains the effect of the proton charge radius, rp. Numerically,
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Figure 6.1: (color online) Determination of the proton’s elec-
tric and magnetic radii. The shown values are given in the
text. The green lines display the Bernauer fit with TPE cor-
rections: TPE-a (solid), TPE-b (dashed). The different uncer-
tainties given in [209] are added in quadrature.

The current situation is illustrated in Fig. 6.1. The CO-
DATA 2010 recommended value, combining the H and ep
scattering results, is [214]:

RE(H + ep) = 0.8775(51) fm, (6.3)

which is in 7� disagreement with the µH result. The CO-
DATA value does not include the extraction based on the
dispersive approach [217]. For more details we refer to re-
cent reviews dedicated exclusively to the ‘proton-size puz-
zle’ [39, 40].

We, on the other hand, shall focus on the evalua-
tions of the proton structure effects beyond the lead-
ing order. These are required, together with the
QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23

6.2. Charge and Zemach Radii from Muonic Hydrogen
The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and

the 2S hyperfine splitting (HFS) [2] (in units of meV):

�Eth
LS = 206.0336(15) � 5.2275(10) (RE/fm)2 +�ETPE

LS , with �ETPE
LS = 0.0332(20), (6.4a)

�Eth
HFS = 22.9763(15) � 0.1621(10) (RZ/fm) +�E(pol)

HFS , with �E(pol)
HFS = 0.0080(26), (6.4b)

where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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Figure 6.1: (color online) Determination of the proton’s elec-
tric and magnetic radii. The shown values are given in the
text. The green lines display the Bernauer fit with TPE cor-
rections: TPE-a (solid), TPE-b (dashed). The different uncer-
tainties given in [209] are added in quadrature.

The current situation is illustrated in Fig. 6.1. The CO-
DATA 2010 recommended value, combining the H and ep
scattering results, is [214]:

RE(H + ep) = 0.8775(51) fm, (6.3)

which is in 7� disagreement with the µH result. The CO-
DATA value does not include the extraction based on the
dispersive approach [217]. For more details we refer to re-
cent reviews dedicated exclusively to the ‘proton-size puz-
zle’ [39, 40].

We, on the other hand, shall focus on the evalua-
tions of the proton structure effects beyond the lead-
ing order. These are required, together with the
QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23

6.2. Charge and Zemach Radii from Muonic Hydrogen
The extraction from µH relies on the following theoretical description of the classic (2P -2S) Lamb shift and

the 2S hyperfine splitting (HFS) [2] (in units of meV):

�Eth
LS = 206.0336(15) � 5.2275(10) (RE/fm)2 +�ETPE

LS , with �ETPE
LS = 0.0332(20), (6.4a)

�Eth
HFS = 22.9763(15) � 0.1621(10) (RZ/fm) +�E(pol)

HFS , with �E(pol)
HFS = 0.0080(26), (6.4b)

where the first number includes the QED effects, as well as their interference with the LO finite-size effect, i.e.,
RE; �ETPE

LS stands for the proton structure effects beyond the LO24; RZ is the Zemach radius; �E(pol)
HFS is the

polarizability effect in the HFS.
The n = 2 energy-level scheme of µH is illustrated in Fig. 6.2, together with the measured transition

frequencies, ⌫s and ⌫t. The obtained experimental values for the Lamb shift and the HFS [215],

�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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The current situation is illustrated in Fig. 6.1. The CO-
DATA 2010 recommended value, combining the H and ep
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cent reviews dedicated exclusively to the ‘proton-size puz-
zle’ [39, 40].
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tions of the proton structure effects beyond the lead-
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QED corrections, as input in the spectroscopy de-
termination of the charge radius. In the follow-
ing, we mainly consider the µH since it is much
more sensitive, than H, to the proton structure ef-
fects.23
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�Eexp
LS = 202.3706(23)meV, (6.5a)

�Eexp
HFS = 22.8089(51)meV, (6.5b)

rely not only on the transition frequencies, but also on predictions of the 2P fine and hyperfine structure
splittings [223] (cf. Fig. 6.2):

⇤ 2P fine structure: �EFS = 8.352082meV,

⇤ 2P3/2 hyperfine structure splitting: �E 2P3/2 HFS = 3.392588meV,

⇤ 2P (f = 1) level mixing: � = 0.14456meV.

Comparison of theory and experiment allows to extract both the proton charge radius and the Zemach radius:
RE = 0.84087(39) fm, RZ = 1.082(37) fm.25

23 The layman explanation of the bigger sensitivity is that the muon probes the proton from a much smaller distance (given the ratio
of the Bohr radii aH/aµH ⇡ 186), thus having a better view on the proton.

24As pointed out in [221, 222], the extraction of RE from the µH Lamb shift uses as input the 3rd Zemach moment from parametriza-
tions of ep data, despite the fact that the latter are inconsistent with resulting RE . This creates a consistency problem in the Lamb shift
description of Eq. (6.4a): in this manner, RE of Eq. (6.7a) and Eq. (6.9) are different!

25Note that the first µH measurement, reported in [1], only covered the transition frequency ⌫t. Accordingly, theory input was
needed also for the 2S HFS: �E2S HFS = 22.8148(78)meV [224] (using RZ = 1.022 fm [225]). In this way, solely the proton charge
radius could be predicted: RE = 0.84184(67) fm.
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Zemach radius:

l

N
GE � 1, GM

Figure 6.4: One-photon exchange graph with FF dependent e.m. vertex.

The effect of elastic proton FFs in the hydrogen Lamb shift and HFS is expressed as (omitting recoil):26

�EFSE
LS = � Z↵

12a3

"

R2
E � hr3iE(2)

2a

#

+O(↵6), (6.7a)

�EnSHFS = EF



1 � 2

a
RZ

�

+O(↵6), (6.7b)

where a = 1/(Z↵mr) is the Bohr radius; EF is the Fermi energy corresponding to the n-th S-level:

EF (nS) =
8Z↵

3a3
1 + {
mM

1

n3
; (6.8)

⌦

r3E
↵

E(2)
=

48

⇡

ˆ 1

0

dQ

Q4

�

G2
E(Q

2) � 1 + 1
3R

2
E Q2

 

(6.9)

is the proton’s 3rd Zemach moment; and

RZ = � 4

⇡

ˆ 1

0

dQ

Q2



GE(Q2)GM (Q2)

1 + { � 1

�

(6.10)

is its Zemach radius. Hereinafter, m is the lepton mass (i.e., me or mµ), M is the proton mass, and mr is the
reduced mass of the lepton-proton system. Furthermore, { is the anomalous magnetic moment and S will
denote the proton’s spin.

In deriving these FSEs, we consider the one-photon exchange diagram shown in Fig. 6.4, where the e.m.
vertex for the proton is given by:

�µ = Z�µF1(Q
2) � 1

2M
�µ⌫q⌫F2(Q

2), (6.11)

with the proton structure information embedded in the Dirac and Pauli FFs. For the photon propagator we
chose the representation in massive Coulomb gauge:

�µ⌫(q, t) = � 1

q2



gµ⌫ � 1

q2 + t
(qµq⌫ � �µq⌫ � �⌫qµ)

�

, with � = (0, ~q ), (6.12)

albeit with the exception that for contractions of the propagator with the subtraction term in Eq. (6.6) we apply
the massless Coulomb gauge.

Deducing a coordinate potential from this Feynman diagram — the so-called Breit potential —, will allow us
to calculate the corrections to the point-like Coulomb interaction within the framework of perturbation theory
(PT). Neglecting retardation, meaning the q0 dependence in the denominators of Eqs. (6.6) and (6.12), one

26In this section we will keep the nuclear charge Z. Of course, for the proton it is Z = 1.
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Table 6.2: Summary of available dispersive calculations for the TPE correction to the HFS in µH.

Reference FF RZ [fm] �Z

[ppm]
�p

recoil

[ppm]
�pol

[ppm]
�1
[ppm]

�2
[ppm]

�FSE

[ppm]
E2S HFS

[meV]

Carlson
et al.
[270, 278]a

AMT [267] 1.080 �7703 931 351(114) 370(112) �19(19) �6421(140) 22.8123

AS [284] 1.091 �7782 931 353 �6498 22.8105

Kelly [266] 1.069 �7622 931 353 �6338 22.8141

MAMI [238,
268, 269]

1.045 22.8187

combinedb 22.8146(49)

Faustov
et al. [276]c 470(104) 518 �48

Martynenko
et al. [225]d Dipole 1.022 �7180 460(80) 514 �58 22.8138(78)e

Experiment
[215]

1.082(37) 22.8089(51)

aQED, higher-order and other small corrections included in E2S HFS are taken from [224]. The Zemach term includes radiative
corrections: �Z = �2↵mrRZ(1 + �radZ ) with �radZ given in [277, 279]. Empirical information on structure functions and FFs are taken
from [195, 262, 280–283].

bslightly moved average of the selected FFs
cThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–290].
dThe calculation is based on experimental data for the nucleon polarized structure functions obtained at SLAC, DESY and CERN

[285–292].
eAdjusted value; as suggested in [270], the original value, 22.8148(78)meV, is corrected by adding �1µeV, because the conventions

of ‘elastic’ and ‘inelastic’ contributions, applied in [224], are inconsistent, see discussion below Eq. (6.52).

l

N

� 0

Figure 6.8: Pion-exchange contribution to the energy spectrum of hydrogen.

The available dispersive calculations for the TPE correction to the HFS in µH are listed in Table 6.2 and
illustrated in Fig. 7.9. Remember that the leading-order HFS is given by the 2S Fermi energy; the numerical
value for µH is:

EF (2S) = 22.8054meV. (6.54)

The structure function g2 is not well measured for the proton. Evaluations of the polarizability contribution
to the HFS are either based on models for g2, or make use of the Wandzura-Wilczek relation [301]:39

gWW
2 (⌫, Q2) = �g1(⌫, Q

2) +

ˆ ⌫

⌫0

d⌫ 0

⌫ 0
g1(⌫

0, Q2), (6.55)

where gWW
2 is the leading twist contribution. For that reason, �2 is accompanied by a large relative error, cf.

Table 6.2 (first row). However, since the weighting function in Eq. (6.48b) tends to be numerically small,
�2 contributes only little to the polarizability effect and the overall uncertainty comes mainly from the �1
contribution.

Information on the structure function g1 is available for momentum-transfers larger than Q2
min. ⇠ 0.05GeV2

[280]. Below this threshold, the Q2-integrand of Eq. (6.48a) is interpolated exploiting well-known sum rules.
In the case of H, where the electron mass can be safely neglected, the slope of the integrand is fixed by the GDH

39Note that the Wandzura-Wilczek relation is consistent with the Burkhardt-Cottingham sum rule, i.e.,
´ 1

0
dx gWW

2 (x,Q2) = 0, cf.
Eq. (5.24), what can be easily shown with the help of Fubini’s theorem.
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The available dispersive calculations for the TPE correction to the HFS in µH are listed in Table 6.2 and
illustrated in Fig. 7.9. Remember that the leading-order HFS is given by the 2S Fermi energy; the numerical
value for µH is:

EF (2S) = 22.8054meV. (6.54)

The structure function g2 is not well measured for the proton. Evaluations of the polarizability contribution
to the HFS are either based on models for g2, or make use of the Wandzura-Wilczek relation [301]:39

gWW
2 (⌫, Q2) = �g1(⌫, Q

2) +

ˆ ⌫

⌫0

d⌫ 0

⌫ 0
g1(⌫

0, Q2), (6.55)

where gWW
2 is the leading twist contribution. For that reason, �2 is accompanied by a large relative error, cf.

Table 6.2 (first row). However, since the weighting function in Eq. (6.48b) tends to be numerically small,
�2 contributes only little to the polarizability effect and the overall uncertainty comes mainly from the �1
contribution.

Information on the structure function g1 is available for momentum-transfers larger than Q2
min. ⇠ 0.05GeV2

[280]. Below this threshold, the Q2-integrand of Eq. (6.48a) is interpolated exploiting well-known sum rules.
In the case of H, where the electron mass can be safely neglected, the slope of the integrand is fixed by the GDH

39Note that the Wandzura-Wilczek relation is consistent with the Burkhardt-Cottingham sum rule, i.e.,
´ 1

0
dx gWW

2 (x,Q2) = 0, cf.
Eq. (5.24), what can be easily shown with the help of Fubini’s theorem.
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numerical values reviewed in: A. Antognini et al., Annals Phys. 331, 127-145 (2013).

subleading effects of 
proton structure 

proposed to resolve 
the puzzle

�V (2�) = �V (2�)
elastic

+ �V (2�)
polariz.
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In our calculation the Born part was separated by subtracting the on-shell �NN pion loop
vertex in the one-particle-reducible VVCS graphs, see diagrams (b) and (c) in Fig. 1. Focus-
ing on the O(p3) corrections (i.e., VVCS amplitude corresponding to the graphs in Fig. 1) we
have explicitly verified that the resulting NB amplitudes satisfy the dispersive sum rules [24]:

T (NB)

1

(⌫2, Q2) = T (NB)

1

(0, Q2) +
⌫2

2⇡2

Z 1

⌫0

d⌫ 0�T (⌫ 0, Q2)

⌫ 02 � ⌫2

, (11a)

T (NB)

2

(⌫2, Q2) =
1

2⇡2

Z 1

⌫0

d⌫ 0 ⌫ 0 2Q2

⌫ 02 +Q2

�T (⌫ 0, Q2) + �L(⌫ 0, Q2)

⌫ 02 � ⌫2

, (11b)

with ⌫
0

= m⇡ + (m2

⇡ + Q2)/(2Mp) the pion-production threshold, m⇡ the pion mass, and
�T (L) the tree-level cross section of pion production o↵ the proton induced by transverse
(longitudinal) virtual photons, cf. Appendix B. We hence establish that one needs to calcu-
late the ‘elastic’ contribution from the Born part of the amplitudes and the ‘polarizability’
contribution from the non-Born part, in accordance with the procedure advocated by Birse
and McGovern [13].

Substituting the O(p3) NB amplitudes into Eq. (7) we obtain the following value for the
polarizability correction:

�E(pol)

2S = �8.16 µeV. (12)

This is quite di↵erent from the corresponding HB�PT result for this e↵ect obtained by
Nevado and Pineda [11]:

�E(pol)

2S (LO-HB�PT) = �18.45 µeV. (13)

Before discussing possible reasons for this di↵erence, let us note that a much simpler formu-
lae can be obtained if we make the low-energy expansion (LEX) of the VVCS amplitude,
assuming that the photon energy in the atomic system is small compared to all other scales.

To leading order in LEX, we may neglect the ⌫ dependence in the numerator of
Eq. (7) and, after Wick-rotating q to Euclidean hyperspherical coordinates [i.e., setting
⌫ = iQ cos�, ~q = (Q sin� sin ✓ cos', Q sin� sin ✓ sin', Q sin� cos ✓)] and angular integra-
tions, we find the following expression:

�E(pol)

nS = �4↵em�
2

n

Z 1

0

dQ

Q2

w
�
Q2/4m2

`

� h
T (NB)

2

(0, Q2)� T (NB)

1

(0, Q2)
i
, (14)

with the weighting function w(⌧`) shown in Fig. 2 and given by:

w(⌧`) =
p
1 + ⌧` �p

⌧`, ⌧` =
Q2

4m2

`

. (15)

Plugging in the LO B�PT expressions from Appendix A we obtain:

�E(pol)

2S = �8.20 µeV, (16)

i.e., nearly the same as before the LEX, cf. Eq. (12). This comparison shows that the LEX
is applicable in this case, at least within the B�PT framework. In HB�PT it is not clear
whether the low-energy and heavy-baryon limits commute. By taking the heavy-baryon

5

where unpolarized, forward Doubly-Virtual 
Compton scattering (VVCS) amplitude:
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FIG. 2: Plot of the Q2 behavior of the weighting function depending on the lepton mass. The blue
dashed line is for the case of the electron, w(⌧e), whereas the solid purple line is for the muon,
w(⌧µ).

limit in T (NB)

1

and T (NB)

2

as shown in Appendix A, we first of all reproduced the O(p3) result

of Birse and McGovern for T (NB)

1

[13], and secondly found that the T (NB)

2

term in the integral
of Eq. (14) fails to converge. Therefore, the after-LEX LO-HB�PT diverges, while the result
before LEX is finite [Eq. (13)], albeit significantly larger in the absolute value than that of
B�PT. It would be interesting to see how much of that finite result comes from Q > 1 GeV.
We suspect that due to these convergence issues the contribution from higher Q regions
to the result in Eq. (13) would be too large to satisfy the ‘e↵ectiveness’ (or, ‘naturalness’)
criterion which states that the high-momentum contribution of finite (renormalized) loop
integrals over quantities which are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calculation [23, 25]. We have checked
that the B�PT calculation does satisfy this criterion. The contribution from momenta above
1 GeV is less than 10%, which is well within the uncertainty of such calculation.

Regarding the uncertainty estimate, we first observe that for low Q the VVCS amplitudes
go as,

T (NB)

1

(0, Q2) ' Q2�M1

(17a)

T (NB)

2

(0, Q2) ' Q2(↵E1

+ �M1

), (17b)

where ↵E1

and �M1

are the electric and magnetic dipole polarizabilities of the proton. Given
the shape of the weighting function plotted in Fig. 2, the main contribution to the integral
in Eq. (14) comes from low Q’s, and hence �M1

cancels out. The dominant polarizability
e↵ect in the Lamb shift comes from the electric polarizability ↵E1

. The B�PT physics of
↵E1

is such that to obtain the empirical number of about 11 (in units of 10�4 fm3): 7 comes
from LO (⇡N loops) and 4 from NLO (⇡N loops) [22], with uncertainty of about ±1 from
the O(p4) low-energy constant. Since in the present calculation we include only the LO
⇡N loops, we expect our value to increase in magnitude when going to the next order (i.e.,
including the ⇡� loops). Therefore, to the usual uncertainty of 15% (' m⇡/GeV ) due
the higher-order e↵ects, we add an uncertainty of 30% [' (M

�

� Mp)/GeV] towards the
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before LEX is finite [Eq. (13)], albeit significantly larger in the absolute value than that of
B�PT. It would be interesting to see how much of that finite result comes from Q > 1 GeV.
We suspect that due to these convergence issues the contribution from higher Q regions
to the result in Eq. (13) would be too large to satisfy the ‘e↵ectiveness’ (or, ‘naturalness’)
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exceed the expected uncertainty of the given-order calculation [23, 25]. We have checked
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NB stands for non-Born, i.e. w/o elastic FFs

empirically known 
‘inelastic’

unknown ‘subtraction’
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Abstract The proton polarizability effect in the muonic-
hydrogen Lamb shift comes out as a prediction of baryon
chiral perturbation theory at leading order and our calcu-
lation yields !E (pol)(2P − 2S) = 8+3

−1 µeV. This result is
consistent with most of evaluations based on dispersive sum
rules, but it is about a factor of 2 smaller than the recent result
obtained in heavy-baryon chiral perturbation theory. We also
find that the effect of !(1232)-resonance excitation on the
Lamb shift is suppressed, as is the entire contribution of the
magnetic polarizability; the electric polarizability dominates.
Our results reaffirm the point of view that the proton structure
effects, beyond the charge radius, are too small to resolve the
‘proton radius puzzle’.

1 Introduction

The eight standard-deviation (7.9σ ) discrepancy in the value
of proton’s charge radius obtained from elastic electron–
proton scattering [1] and hydrogen spectroscopy [2] on one
hand and from the muonic-hydrogen (µH) spectroscopy
[3,4] on the other, a.k.a. the proton charge radius puzzle [5,6],
is yet to meet its fully agreeable solution. One way to solve
it is to find an effect that would raise the µH Lamb shift by
about 310 µeV, and it has been suggested that proton struc-
ture could produce such an effect at O(α5

em), e.g. [7,8]. Most
of the studies, however, derive an order of magnitude smaller
effect of proton structure beyond the charge radius [9–15].

The O(α5
em) effects of proton structure in the Lamb shift

are usually divided into the effect of (i) the 3rd Zemach
moment, (ii) finite-size recoil, and (iii) polarizabilities. The
first two are sometimes combined into (i′) the ‘elastic’ 2γ

contribution, while the polarizability effect is often split
between (ii′) the ‘inelastic’ 2γ and (iii′) a ‘subtraction’ term,

a e-mail: alarcon@kph.uni-mainz.de

cf. Table 1. The ‘elastic’ and ‘inelastic’ 2γ contributions are
well constrained by the available empirical information on,
respectively, the proton form factors and unpolarized struc-
ture functions. The ‘subtraction’ contribution must be mod-
eled, and in principle one can make up a model where the
effect is large enough to resolve the puzzle [8].

In this work we observe that chiral perturbation theory
(χPT) contains definitive predictions for all of the above
mentioned O(α5

em) proton structure effects, hence no model-
ing is needed, assuming of course that χPT is an adequate the-
ory of the low-energy nucleon structure. Some of the effects
were already assessed in the heavy-baryon variant of the the-
ory (HBχPT), namely: Nevado and Pineda [11] computed the
polarizability effect to leading order (LO) [i.e., O(p3)], while
Birse and McGovern [13] computed the ‘subtraction’ term
in O(p4) HBχPT (with the caveat explained in the end of
Sect. 4). Here, on the other hand, we work in the framework of
a manifestly Lorentz-invariant variant of χPT in the baryon
sector, referred to as BχPT [16–19]. At least the LO results
for nucleon polarizabilities are known to be very different
in the two variants of the theory, e.g., the proton magnetic
polarizability is (in units of 10−4 fm3): 1.2 in HBχPT [20]
vs. −1.8 in BχPT [21–23]. Thus, the LO effect of the pion
cloud is paramagnetic in one case and diamagnetic in the
other (see [24,25] for more on HBχPT vs. BχPT). Due to
these qualitative and quantitative differences it is interesting
to examine the BχPT predictions for the 2γ contributions to
the Lamb shift. Here we compute the polarizability effect at
LO BχPT and indeed find it significantly different from the
LO HBχPT results of Nevado and Pineda [11]; see Table 1.

Our result for the ‘subtraction’ and ‘inelastic’ contribu-
tions differ from most of the previous works because we have
neglected the effect of the nucleon transition into its lowest
excited state—the !(1232). We argue, however (in Sect. 3),
that the latter effect cancels out of the polarizability contri-
bution. Thus, even though the ‘subtraction’ and ‘inelastic’
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Our result rules out the scenarios where the ”proton charge radius puzzle” is solved by O(↵5

em) effects of proton
structure on the side of muonic hydrogen.

PACS numbers:

The ”proton charge radius puzzle” stands for the discrep-
ancy in the value of proton’s charge radius obtained form elas-
tic electron-proton scattering measurements [1] and atomic
measurements of the normal hydrogen [2] on one hand, and
the muonic hydrogen (µH) spectroscopy [3] on the other. The
discrepancy is almost 8 standard deviations (i.e., 7.7�). One
way to mend it is to find an effect which would raise the µH
Lamb shift by about 310 µeV and it has been suggested that
proton structure can produce such an effect at O(↵5

em

). Most
of the studies, however, derive a very modest effect of proton
structure beyond the charge radius.

Namely, the measured Lamb shift for the muonic hydrogen
is around 300 µeV lower than one expects from theory using
the charge radius deduced from normal hydrogen. This dif-
ference could be due to the internal electromagnetic structure
of the proton since, due to its larger mass, the muon is much
closer to the proton than the electron. Several studies have
been done investigating the effects of the internal electromag-
netic structure of the proton to the muonic hydrogen Lamb
shift. They point to a contribution of the order of -10µeV,
which is one order of magnitude smaller than needed to recon-
cile the electronic and muonic hydrogen measurements. Re-
cently, it was suggested that this difference could be accounted
for by effects of the proton magnetic polarizability at large vir-
tualities in the two photon exchange diagrams [4].

In this letter we investigate the contribution of the hadronic
structure of the proton to the muonic hydrogen Lamb shift.
They enter in the two photon exchange diagrams and are
related to the forward double virtual Compton scattering
(VVCS) on the proton. These contributions to the Lamb shift
can be parametrized in terms of the Compton tensor Tµ⌫ . This
embodies the information on the response of the proton due
to electromagnetic probes. For forward scattering, the spin-
averaged Compton tensor takes the form [5]

(b) (c)(a)

(d) (e) (f )

(g) (h) (j)

(k)

�

FIG. 1: Diagrams considered for the calculation of T1 and T2. Only
the direct process in the VVCS is shown. Double line represents the
�(1232) propagator.

Tµ⌫(P, q) =
i

8⇡m
N

Z
d4 eiq·xhp|Tjµ(x)j⌫(0)|pi

=

✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q

2)

+
1

m2
N

✓
Pµ � P · q

q2
qµ

◆✓
P ⌫ � P · q

q2
q⌫
◆
T2(⌫, Q

2), (1)

where m
N

is the nucleon mass, P and q are the proton and
photon momenta, respectively , ⌫ = P ·q/m

N

and Q2 = �q2

is the virtuality of the photons.
On the other hand, since we are interested in the O(↵5

em

)
contributions, we considered that the external muon and pro-
ton lines have zero three-momentum, which implies that ⌫ =
P · q/m

N

= q0. Corrections due to finite three-momenta are
higher orders in ↵

em

.
From this consideration, one can derive a very simple sum

rule to connect T1 and T2 to the Lamb shift correction �E
nS

[5]

= with corrections 
to elastic  

proton FFs  
subtracted, 

i.e. “polarizability” 
alone
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)

"E (subt)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-

Footnote 1 continued
come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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of Nevado and Pineda [11] at zero energy (ν = 0), up to a
convention for an overall normalization of the amplitudes.
We have also reproduced their expressions for T1 and T2 (cf.
Eq. (3.2) and (3.5) in Ref. [11]) for all ν and Q2.

Substituting these expressions into (12), we obtain the
following value for the polarizability contribution to the 2S-
level shift in µH:

"E (pol)
2S (LO-HBχPT) = −17.85 µeV. (19)

This is slightly different from the result of Ref. [11] that we
quote in Eq. (11), which is because of the neglected energy
dependence, i.e., the use of the LEX in deriving Eq. (12) from
(6). Still, the difference between the exact and LEX result is
well within the expected 15 % uncertainty of such calculation
and hence we conclude that the LEX approximation works
well in this case too.

Substitution to Eq. (17) yields the HBχPT predictions for
the ‘inelastic’ and ‘subtraction’ contributions:

"E (subt)
2S (LO-HBχPT) = 1.3 µeV, (20a)

"E (inel)
2S (LO-HBχPT) = −19.1 µeV. (20b)

Neglecting for a moment the difference between τπ and τµ,
we obtain very simple closed expressions for the Lamb-shift
contributions:

"E (pol)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

4(4π fπ )2

mµ

mπ
(1−10G+6 log 2)=−16.1 µeV, (21a)
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2S (LO-HBχPT)
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8(4π fπ )2

mµ
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(1 − 2G + 2 log 2) = 1.1 µeV, (21b)

"E (inel)
2S (LO-HBχPT)

≈ α5
emm3

r g2
A

8(4π fπ )2

mµ

mπ
(1 − 18G+10 log 2) = −17.2 µeV,

(21c)

where G ≃ 0.9160 is the Catalan constant. This should pro-
vide an impression of the parametric dependencies arising
in χPT for this effect. The resulting numbers are within the
expected uncertainty for HBχPT result, and they can in prin-
ciple be easily improved in a perturbative treatment of the
pion–muon mass difference.

So far we have been discussing the O(p3) result. At higher
orders one in addition to the VVCS calculation needs to con-
sider the appropriate operators from the effective lepton–
nucleon Lagrangian with corresponding low-energy con-
stants fixed to, e.g., the low-energy lepton–nucleon scatter-
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come from the expansion of the leading pion loop contribution to the
term βM1 Q2 in powers of mπ and hence are part of δβ in that reference.

ing. Birse and McGovern [13] computed the VVCS ampli-
tude T1(0, Q2) to order O(p4), but they evaded the consider-
ation of the lepton–nucleon terms by introducing a “physical
cutoff” in Q. Hence, their resulting calculation of the subtrac-
tion term is strongly cutoff dependent and lies, strictly speak-
ing, outside the χPT framework; we refer to it as “HBχPT-
inspired” calculation.

5 “Effectiveness” of HBχPT vs. BχPT

Although at high enough orders HBχPT and BχPT are
bound to yield the same results, at low orders this is not
necessarily so and practice shows that especially at ‘predic-
tive’ orders, where there are no free low-energy constants
to absorb the differences, HBχPT and BχPT results differ
substantially, sometimes even in the sign of the total effect
(cf. the order p3 result for the magnetic polarizability of the
nucleon [24,26]). The proton polarizability contribution to
the Lamb shift is apparently such a case as well. So, hav-
ing found the substantial differences between the HBχPT
and BχPT predictions the obvious question is: which one is
more reliable, if any?

A rather common point of view is that, since HBχPT
neglects only the effects of “higher order”, any substantial
disagreement only signals the importance of higher-order
effects and hence neither of the calculations should be trusted
at this order. On the other hand, it is plausible that not all the
higher-order effects are large, but only the ones present in
the BχPT calculation and dismissed in the one of HBχPT.
In support of the latter scenario is the physical principle
of analyticity—consequence of (micro-)causality, which in
BχPT is obeyed exactly, while in HBχPT it is obeyed only
approximately, albeit improvable order by order.

Another, perhaps more quantitative criterion is the one put
forward by Strikman and Weiss [32]. In the interpretation of
Ref. [24], it requires that the high-momentum contribution
of finite (renormalized) loop integrals over quantities which
are invariant under redefinitions of hadron fields should not
exceed the expected uncertainty of the given-order calcula-
tion. In other words, the contribution from beyond the scales
at which the effective theory is applicable should not exceed
a natural estimate of missing higher-order effects.

In our case the VVCS amplitudes are such quantities
invariant under redefinitions of pion and nucleon fields and
hence it makes sense to examine Fig. 4, where the polariz-
ability effect is plotted as a function of the ultraviolet cutoff
Qmax imposed on the momentum integration in (12).

The figure clearly shows that the relative size of the high-
momentum contribution in the HBχPT case is substantially
larger than in BχPT.

Assuming the breakdown scale for χPT is of order of the
ρ-meson mass, mρ = 777 MeV, we can make a more quanti-
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Table 1 Summary of available calculations of the ‘subtraction’ (second row), ‘inelastic’ (third row), and their sum—polarizability (last row) effects
on the 2S level of µH. The last column represents the χPT predictions obtained in this work; here the omitted effect of the "(1232)-resonance
excitation is missing in the first two (‘subtraction’ and ‘inelastic’) numbers, but it does not affect the total polarizability contribution where it is to
cancel out

(µeV) Pachucki [9] Martynenko [10] Nevado and
Pineda [11]

Carlson and
Vanderhaeghen [12]

Birse and
McGovern [13]

Gorchtein
et al. [14]

LO-BχPT
[this work]

"E (subt)
2S 1.8 2.3 – 5.3 (1.9) 4.2 (1.0) −2.3 (4.6)a −3.0

"E (inel)
2S −13.9 −13.8 – −12.7 (5) −12.7 (5)b −13.0 (6) −5.2

"E (pol)
2S −12 (2) −11.5 −18.5 −7.4 (2.4) −8.5 (1.1) −15.3 (5.6) −8.2(+1.2

−2.5)

a Adjusted value; the original value of Ref. [14], +3.3, is based on a different decomposition into the ‘elastic’ and ‘polarizability’ contributions
b Taken from Ref. [12]

values appear to be very different from the empirical values
due to neglect of the "(1232) excitation, the polarizability
contribution is not affected by this neglect.

The details of our calculation and main results are pre-
sented in the following section. Remarks on the role of the
"(1232) excitation are given in Sect. 3. The heavy-baryon
expansion of our results is discussed in Sect. 4. An “effective-
ness” criterion is applied to the HBχPT and BχPT results in
Sect. 5. The conclusions are given in Sect. 6. Expressions for
the LO χPT forward doubly virtual proton Compton scat-
tering (VVCS) amplitude and pion electroproduction cross
sections are given in Appendices A and B, respectively.

2 Outline of the calculation and results

We begin with the leading order chiral Lagrangian for the
pion and nucleon fields, as well as the minimally coupled
photons; see e.g. [16]. After a chiral rotation of the nucleon
field the Lagrangian resembles that of the chiral soliton
model; see [26] for details. As the result, the pseudovec-
tor π N N interaction transforms into the pseudoscalar one,
while a new scalar–isoscalar ππ N N interaction is generated.
The original and the redefined pion–nucleon Lagrangians,
expanded up to the second order in the pion field, take the
form

L(1)
π N = N

(
i /∂ − MN + gA

2 fπ
τ a /∂ πaγ5

− 1
4 f 2

π

τ aεabcπb /∂ πc
)

N + O(π3), (1a)

L′(1)
π N = N

(
i /∂ − MN − i

gA

fπ
MN τ aπaγ5

+ g2
A

2 f 2
π

MN π2 + (g2
A − 1)

4 f 2
π

τ aεabcπb /∂ πc

)

N + O(π3),

(1b)

where N (x) and MN is the nucleon field and mass, respec-
tively, πa(x) is the pion field; gA ≃ 1.27, fπ ≃ 92.4 MeV.

Upon the minimal inclusion of the electromagnetic field,
the two Lagrangians give identical results for the O(p3)

Compton scattering amplitude and the isovector term pro-
portional to (g2

A − 1) does not contribute. Working with the
second Lagrangian, however, simplifies a lot the evaluation
of the two-loop graphs needed for the Lamb-shift calcula-
tion. The resulting Feynman diagrams, omitting crossed and
time-reversed ones, are shown in Fig. 1.

These graphs represent an O(α2
em) correction to the

Coulomb potential and can be treated in stationary pertur-
bation theory. Since the Coulomb wave function is O(α

3/2
em ),

the first-order contribution of these graphs to the energy shift
is O(α5

em) as requested. As any energy transfer in the atomic
system brings in extra powers of αem, we neglect it, and hence
consider strictly the zero-energy forward kinematics. In this
case the Feynman amplitude M is a number in momentum
space, corresponding to a potential equal to M δ(r⃗). Because
of the δ-function only the S-levels are shifted:

"EnS = φ2
n M, (2)

where φ2
n = m3

r α
3
em/(πn3) is the hydrogen wave function at

the origin, for mr = mℓ Mp/(mℓ + Mp) the reduced mass
of the lepton–proton system, and mℓ, Mp = MN the corre-
sponding masses of the constituents.

It is customary for the 2γ contributions to be split into
leptonic and hadronic parts, i.e.,

M = e2

2mℓ

∫
d4q

i(2π)4

1
q4 Lµν(ℓ, q) T µν(P, q), (3)

where e2 = 4παem is the lepton charge squared, and

Lµν = 1
1
4 q4 − (ℓ · q)2

[q2ℓµℓν − (qµℓν + qνℓµ) ℓ · q

+gµν(ℓ · q)2] (4)

is the leptonic tensor, with ℓ and q the 4-momenta of the
lepton and the photons, respectively; gµν = diag(1,−1,−1,

−1) is the Minkowski metric tensor. The tensor T µν is the
unpolarized VVCS amplitude, which can be written in terms

123
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size of the red blob

LO

NLO NNLO

Lensky & V.P., EPJC (2010); 
Lensky, McGovern & V.P.,  
arXiv:1510.02794 (today)
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Data points:
MAMI/TAPS 
(2001)
SAL (1993)
Illinois (1991)

Curves:

Klein-Nishina

Born + WZW

+ p-qube

Total NNLO

Lensky & V.P.,EPJC (2010)
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Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering

Nadiia Krupina and Vladimir Pascalutsa
PRISMA Cluster of Excellence Institut für Kernphysik, Johannes Gutenberg–Universität Mainz, 55128 Mainz, Germany

(Received 3 April 2013)

1 We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in

-2

 0

 2

 4

 6

 8

 6  8  10  12  14  16

M
1 

 (
10

-4
 fm

3 )

E1  (10-4 fm3)

Zieg
er

B PT

Sum rule

HB PT

M
ac

G
ib

bo
nPDG

TAPS

Federspiel

Zieg
er

B PT HB PT

PDG

TAPS

Federspiel

Sum rule

B

FIG. 1 (color online). The scalar polarizabilities of the proton.
Magenta blob represents the PDG summary [1]. Experimental
results are from Federspiel et al. [15], Zieger et al. [16],
MacGibbon et al. [17], and TAPS [18]. ‘‘Sum Rule’’ indicates
the Baldin sum rule evaluations of !E1 þ "M1 [18] (broader
band) and [19]. ChPT calculations are from [4] (B'PT—red
blob) and the ‘‘unconstrained fit’’ of [5] (HB'PT—blue ellipse).
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Curves:

MAID (empir.)

LO-HBChPT

LO-BChPT

NLO-BChPT

Alarcon, Lensky & VP, PRC (2014)
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Curves:

MAID (empir.)

NLO-HBChPT

LO-BChPT

NLO-BChPT

NLO-BChPT
[Krebs et al
2013)]

Data points:
JLab spin program

Alarcon, Lensky & VP, PRC (2014)
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Chiral perturbation theory of muonic hydrogen Lamb shift

Jose Manuel Alarcón,1 Vadim Lensky,2 and Vladimir Pascalutsa1

1

Cluster of Excellence PRISMA Institut f

¨

ur Kernphysik,

Johannes Gutenberg-Universit

¨

at, Mainz D-55099, Germany

2

Theoretical Physics Group, School of Physics and Astronomy,

University of Manchester, Manchester, M13 9PL, United Kingdom

(Dated: October 24, 2013)

The leading-order prediction of proton polarizability-like effect on the muonic hydrogen Lamb shift is ob-
tained in baryon chiral perturbation theory. The magnitude of the effect is �E(2P � 2S) ' 8µeV, which is
consistent with previous calculations based on heavy-baryon chiral perturbation theory and dispersion theory.
Our result rules out the scenarios where the ”proton charge radius puzzle” is solved by O(↵5

em) effects of proton
structure on the side of muonic hydrogen.

PACS numbers:

The ”proton charge radius puzzle” stands for the discrep-
ancy in the value of proton’s charge radius obtained form elas-
tic electron-proton scattering measurements [1] and atomic
measurements of the normal hydrogen [2] on one hand, and
the muonic hydrogen (µH) spectroscopy [3] on the other. The
discrepancy is almost 8 standard deviations (i.e., 7.7�). One
way to mend it is to find an effect which would raise the µH
Lamb shift by about 310 µeV and it has been suggested that
proton structure can produce such an effect at O(↵5

em

). Most
of the studies, however, derive a very modest effect of proton
structure beyond the charge radius.

Namely, the measured Lamb shift for the muonic hydrogen
is around 300 µeV lower than one expects from theory using
the charge radius deduced from normal hydrogen. This dif-
ference could be due to the internal electromagnetic structure
of the proton since, due to its larger mass, the muon is much
closer to the proton than the electron. Several studies have
been done investigating the effects of the internal electromag-
netic structure of the proton to the muonic hydrogen Lamb
shift. They point to a contribution of the order of -10µeV,
which is one order of magnitude smaller than needed to recon-
cile the electronic and muonic hydrogen measurements. Re-
cently, it was suggested that this difference could be accounted
for by effects of the proton magnetic polarizability at large vir-
tualities in the two photon exchange diagrams [4].

In this letter we investigate the contribution of the hadronic
structure of the proton to the muonic hydrogen Lamb shift.
They enter in the two photon exchange diagrams and are
related to the forward double virtual Compton scattering
(VVCS) on the proton. These contributions to the Lamb shift
can be parametrized in terms of the Compton tensor Tµ⌫ . This
embodies the information on the response of the proton due
to electromagnetic probes. For forward scattering, the spin-
averaged Compton tensor takes the form [5]

(b) (c)(a)

(d) (e) (f )

(g) (h) (j)

(k)

�

FIG. 1: Diagrams considered for the calculation of T1 and T2. Only
the direct process in the VVCS is shown. Double line represents the
�(1232) propagator.

Tµ⌫(P, q) =
i

8⇡m
N

Z
d4 eiq·xhp|Tjµ(x)j⌫(0)|pi

=

✓
�gµ⌫ +

qµq⌫

q2

◆
T1(⌫, Q

2)

+
1

m2
N

✓
Pµ � P · q

q2
qµ

◆✓
P ⌫ � P · q

q2
q⌫
◆
T2(⌫, Q

2), (1)

where m
N

is the nucleon mass, P and q are the proton and
photon momenta, respectively , ⌫ = P ·q/m

N

and Q2 = �q2

is the virtuality of the photons.
On the other hand, since we are interested in the O(↵5

em

)
contributions, we considered that the external muon and pro-
ton lines have zero three-momentum, which implies that ⌫ =
P · q/m

N

= q0. Corrections due to finite three-momenta are
higher orders in ↵

em

.
From this consideration, one can derive a very simple sum

rule to connect T1 and T2 to the Lamb shift correction �E
nS

[5]

Hagelstein & V.P., in progress
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Electromagnetic Nucleon to Delta 
transition

JP=3/2+, M∆ =1.232, Γ∆=0.2 GeV

N ! ∆ transition: 

π N ! ∆ (99%), γ N ! ∆ (<1%)

� γ¤N∆ is specified by three form-factors: GM
¤ (Q2) [M1], GE

¤ (Q2) [E2], GC
¤ (Q2) [C2]

� studied in pion electroproduction on the nucleon at the resonance kinematics, s=M∆
2

= + +  …
Quadrupole N-> Delta transitions signatures of  nucleon deformation

Physica 96A (1979) 27-30 O North-Holland Publishing Co. 

T H E  U N M E L L I S O N A N T  Q U A R K  

SHELDON L. GLASHOW* 
Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138, USA 

Today's candidates for ultimate constituents of all mat ter-natural  or 
artificially p roduced-  are quarks and leptons. We believe that there are at 
least six flavors of quarks and six flavors of leptons as well. Elementary 
particle interactions- strong, weak, and electromagnetic- result from a non- 
Abelian gauge theory involving at least twelve gauge fields. 

My talk concerns the structure of baryons made up of the three original and 
familiar quark flavors, up, down and strange. Baryons behave as i f  they were 
non-relativistic bound states of these slowly-moving heavy quarks. While this 
picture has not yet been shown to follow from fundamental theory, it 
provides a successfully predictive model of baryons. 

With fermion antisymmetry naturally laid upon the color degree of 
freedom, the flavor-spin-space wave function of three quarks must be com- 
pletely symmetric. The ground state S-wave baryons should (and do) com- 
prise a 56-dimensional representation of non-relativistic SU(6). Baryons with 
one unit of orbital angular momentum should comprise a 70-plet. Indeed, the 
five observed odd-parity isotopic multiplets of non-strange baryons are just 
those of such a representation. 

Magnetic moments of the members of the baryon octet are also well 
described in this picture. They are given by the vector sum of the Dirac 
moments of the constituent quarks. We obtain the simple formulae 

e 
~P = 2---m-m ' 

e 
~N= 3m'  

e 
/zA = 6M 

for the magnetic moments of the proton, neutron, and A hyperon in terms of 
the mass m of the light quark and the mass M of the strange quark. Note that 

3 the old SU(6) prediction /xp =--~/ZN is implied, but the SU(3) prediction of 

* Research supported in part by the National Science Foundation under Grant Number 
PHY77-22864. 
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Proton radius puzzle: possible explanations

 ΔELS$=$209.9779$(49)$.$5.2262$$RE2$+$0.00913$$R3(2)$$meV$

different     radii     

Lamb shift 

difference of      

310 ± 2 μeV     

μH expt. wrong ?  

μH theory wrong ?       

- soft hadronic corrections   

- missed QED or EW corrections     

eH theory wrong ?  

eH expt. wrong ? -> R∞ wrong  
 + ep scattering wrong:   

- 2γ corrections     
- low Q2 extrapolation     

Beyond Standard Model     
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Figure 7.6: �LT of the nucleons. fig:deltaLT
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Figure 7.7: Summary of available calculations for the polarizability correction to the Lamb shift in µH. fig:LSSummary
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FIG. 3. (color online). The cutoff-dependence of leading-order loop
contributions to various nucleon quantities (mass, isovector AMM,
and proton’s magnetic polarizability) calculated in HBχPT (blue
dashed curves) and BχPT (red solid curves).

2. The HB- and BχPT results are guaranteed to be the
same at small values of Λ, as can be seen by taking
derivatives of Eq. (8) with respect to Λ2, at Λ = 0.
However, at finite values of Λ the differences are appre-

ciable. Observing significant differences for Λ of order
mπ, as in the case of βp, indicates that the size of the
1/M̂N terms is largely underestimated in HBχPT.

V. MATCHING: CONFRONTING THE DATA

Eventually, the χPT results must be matched to the under-
lying theory – or in practice – fitted to experimental and lattice
QCD simulation results.
The case of magnetic polarizability is interesting. Since

there are no unknown LECs at leading order, it constitutes a
genuine prediction. Unfortunately, there are no lattice results
for this quantity, while the experimental data are largely un-
certain (see Ref. [33] for a recent discussion). One thing that
the data indisputably show is that βp is small compared to the
electric polarizability, and positive, which seems to be more
consistent with the HBχPT result. However, it is well known
that βp must have a large positive contribution from the ex-
citation of the ∆(1232) resonance [33], which can only be
accommodated if the chiral loops are negative and partially
cancel it out. Thus, the natural explanation of βp in the the-
ory with explicit ∆ baryons is provided by BχPT, rather than
HBχPT.
For the nucleon mass, one does not expect much difference

between HB- and BχPT around the physical pion mass, based
on Fig. 3. For larger pion masses, however, the difference
becomes significant, and may affect the fit to lattice results as
is shown in what follows.
In Figs. 4 and 5, chiral extrapolations of recent lattice re-

sults from PACS-CS [28] and JLQCD [29] are presented. The
different panels correspond to different values of the cutoff
Λ, while the dashed and solid curves correspond to HB- and
BχPT fit at order p3. The values of the fit parameters obtained
using PACS-CS and JLQCD results are shown in Tables I and
II, respectively.
The PACS-CS results were generated using non-

perturbatively O(a)-improved Wilson quark action at a
lattice box size of ∼ 2.9 fm, but the set only contains five
points, and there is a large statistical error in the smallest
m2

π point. The JLQCD results were generated using overlap
fermions in Nf = 2 QCD. The lattice box length for each
simulation result is ∼ 1.9 fm, with a corresponding lattice
spacing is 0.118 fm. The box size is small compared to that
of the PACS-CS simulations, but the statistical uncertainties
in each point are also smaller. For simplicity, the fits also
neglect possible finite-volume corrections.

Previous studies in HBχPT have indicated that, for lattice
results extending outside the chiral power-counting regime,
the optimal value of the FRR scale Λ is of the order Λ ≈ 1
GeV [32]. Clearly, Fig. 4 shows agreement that the best
heavy-baryon result is obtained for Λ ≈ 1 GeV. The heavy-
baryon extrapolation is much more sensitive to changes in the

FRR scaleΛ comparedwith the BχPT extrapolation, in agree-
ment with Fig. 3.
For small values of Λ, the HBχPT and BχPT results are

similar, since the chiral loops are suppressed. An almost-
linear fit eventuates in both cases. This is not ideal, as Fig. 4
indicates that neglecting the chiral curvature leads to a poor

MN ⇠ m3
⇡

 ⇠ m⇡

�M ⇠ 1

m⇡

Heavy-Baryon expansion fails for quantities where
the leading chiral-loop effects scales with a negative 
power of pion mass

E.g.: the effective range parameters of the NN force
are such quantities -- hope for “perturbative pions” (KSW)
in BChPT



Vladimir Pascalutsa — Beyond the proton radius — FKK-15 — Budapest, Oct 13, 2015Vladimir Pascalutsa — A few moments in ChPT — Workshop on Tagged Structure Functions — JLab, Jan 16-18, 2014

From beam asymmetry

28

⌃

3

⌘
d�|| � d�?

d�|| + d�?

LEX

= ⌃

(Born)

3

� 4�M1

Z2↵em

cos ✓ sin2 ✓

(1 + cos

2 ✓)2
!2

+O(!4

)

Separation of Proton Polarizabilities with the Beam Asymmetry of Compton Scattering
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We propose to determine the magnetic dipole polarizability of the proton from the beam asymmetry of

low-energy Compton scattering based on the fact that the leading non-Born contribution to the asymmetry

is given by the magnetic polarizability alone; the electric polarizability cancels out. The beam asymmetry

thus provides a simple and clean separation of the magnetic polarizability from the electric one.

Introducing polarizabilities in a Lorentz-invariant fashion, we compute the higher-order (recoil) effects

of polarizabilities on beam asymmetry and show that these effects are suppressed in forward kinematics.

With the prospects of precision Compton experiments at the Mainz Microtron and High Intensity Gamma

Source facilities in mind, we argue why the beam asymmetry could be the best way to measure the elusive

magnetic polarizability of the proton.

DOI: 10.1103/PhysRevLett.110.262001 PACS numbers: 13.60.Fz, 14.20.Dh, 25.20.Dc

The current Particle Data Group (PDG) [1] values of the
electric- and magnetic-dipole polarizabilities of the proton
[2,3], i.e.,

!E1 ¼ ð12:0# 0:6Þ % 10&4 fm3; (1a)

"M1 ¼ ð1:9# 0:5Þ % 10&4 fm3 (1b)

are in significant disagreement with the most recent post-
dictions of chiral effective field theory [4,5], as can be seen
in Fig. 1. The state-of-the-art chiral effective field theory
calculations, based on either the baryon (B) or heavy-
baryon (HB) chiral perturbation theory (ChPT) with octet
and decuplet fields [6], are in excellent agreement with the
experimental Compton-scattering cross sections, but not
necessarily in agreement with the polarizabilities extracted
from these data by the experimental groups, cf. [7] for
review. The situation is becoming more acute as the
demand for precise knowledge of nucleon polarizabilities
is growing; they are for instance the main source of uncer-
tainty in the extraction of the proton charge radius from the
muonic hydrogen Lamb shift (see [8] for a recent review).

A likely source of these discrepancies is an underesti-
mate of model dependence in the extraction of polarizabil-
ities from Compton-scattering data. In principle, one
should opt for a model-independent extraction, based on
the low-energy expansion (LEX) of Compton-scattering
observables, where the leading-order terms, beyond the
Born term, are expressed through polarizabilities. For ex-
ample, the non-Born part of the unpolarized differential
cross section for Compton scattering off a target with mass
M and charge Ze is given by [2]

d#ðNBÞ

d!L
¼ &Z2!em

M

!
$0

$

"
2
$$0½!E1ð1þ cos2%LÞ

þ 2"M1 cos%L) þOð$4Þ; (2)

where $ ¼ ðs&M2Þ=2M and $0 ¼ ð&uþM2Þ=2M are,
respectively, the energies of the incident and scattered

photon in the lab frame, %L (d!L ¼ 2& sin%Ld%L) is the
scattering (solid) angle; s, u, and t ¼ 2Mð$0 & $Þ are the
Mandelstam variables; and !em ¼ e2=4& is the fine-
structure constant. Hence, given the exactly known Born
contribution [9] and the experimental angular distribution
at very low energy, one could in principle extract the
polarizabilities with a negligible model dependence. In
reality, however, in order to resolve the small polarizability
effect in the tiny Compton cross sections, most of the
measurements are done at energies exceeding 100 MeV,
i.e., not small compared to the pion mass m&. It is m&, the
onset of the pion-production branch cut, that severely
limits the applicability of a polynomial expansion in
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FIG. 1 (color online). The scalar polarizabilities of the proton.
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energy such as LEX. At the energies around the pion-
production threshold one obtains a very substantial
sensitivity to polarizabilities but needs to resort to a
model-dependent approach in order to extract them (see
[10,11] for reviews).

The magnetic polarizability !M1 seems to be affected
the most: the central value of the BChPT calculation is a
factor of 2 larger than the PDG value. This is attributed to
the dominance of "E1 in the unpolarized cross section.
(The problem is quite similar to the case of proton form
factors, where the angular (Rosenbluth) separation from
unpolarized scattering did not yield the correct result for
the electric form factor, due to the dominance of the
magnetic contribution, and only separating the electric
form factor from the magnetic one by using polarization
has yielded a break through. See [12,13] for reviews.) It is
desirable to find an observable sensitive to !M1 alone, such
that the latter could be determined independently of "E1.
According to the leading-order LEX for cross sections
involving linearly polarized photons [14], the difference
of cross sections for photons polarized perpendicular or
parallel to the scattering plane,

ðd#? " d#jjÞ=d! (3)

depends only on "E1, while the combination

ðcos2$d#? " d#jjÞ=d! (4)

only on !M1. New experiments at the Mainz Microtron
(MAMI) and the High Intensity Gamma Source (HIGS) are
planned to measure these two combinations in order to
extract "E1 and !M1 independently. This Letter aims to
show that !M1 can directly be extracted from the beam
asymmetry,

"3 $
d#jj " d#?
d#jj þ d#?

; (5)

and that such extraction is potentially more accurate than
the one based on the observable given by Eq. (4).

Indeed, applying the LEX for the beam asymmetry of
proton Compton scattering, we arrive at the following
result:

"3 ¼ "ðBÞ
3 " 4M!2 cos$ sin2$

"emð1þ cos2$Þ2 !M1 þOð!4Þ; (6)

where "ðBÞ
3 is the exact Born contribution, while

! ¼ s"M2 þ 1
2 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 " t
p ; $ ¼ arccos

"
1þ t

2!2

#
(7)

are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX, the formula is valid for! and $ being the energy and
angle in the lab or center-of-mass frame.

Equation (6) shows that the leading (in LEX) effect of
the electric polarizability cancels out, while the magnetic

polarizability remains. Hence, our first claim is that a low-
energy measurement of "3 can in principle be used to
extract !M1 independently of "E1, just as it was proposed
for the combination of polarized cross sections given in
Eq. (4).
In reality the low-energy Compton experiments on the

proton are difficult because of small cross sections and
overwhelming QED backgrounds. Precision measurement
only becomes feasible for photon-beam energies above
60 MeV and scattering angles greater than 40 degrees.
The upcoming experiments at HIGS and MAMI are
planned for the energies between 80 and 150 MeV. As
mentioned above, at these energies the effect of higher-
order terms may become substantial. One way to see it is to
compare the LEX result with the dispersion-relation cal-
culations or calculations based on chiral perturbation
theory.
Figures 2 and 3 demonstrate such a comparison of the

leading-LEX result to the next-next-to-leading order
(NNLO) BChPT result of Ref. [4] for the two observables
defined in Eqs. (4) and (5). The observables are plotted for
the case of proton Compton scattering as a function of
magnetic polarizability of the proton. From Fig. 2 one sees
that for the beam energy of 100 MeV the LEX is in a good
agreement with the BChPT result, especially for the
forward directions (left panels).
As expected we observe a significant sensitivity of these

observables to !M1. However, the conventional observable
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FIG. 2 (color online). Beam asymmetry "3—upper panel, and
the linear combination of polarized cross sections defined in
Eq. (4)—lower panel, shown as function of !M1 for fixed photon
energy of 100 MeV and scattering angles of 60 (left panels) and
120 (right panels) degrees. The curves are as follows: dashed
green—Born contribution; dash-dotted magenta—the leading
LEX formula Eq. (6); red solid—NNLO BChPT [4].
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energy such as LEX. At the energies around the pion-
production threshold one obtains a very substantial
sensitivity to polarizabilities but needs to resort to a
model-dependent approach in order to extract them (see
[10,11] for reviews).

The magnetic polarizability !M1 seems to be affected
the most: the central value of the BChPT calculation is a
factor of 2 larger than the PDG value. This is attributed to
the dominance of "E1 in the unpolarized cross section.
(The problem is quite similar to the case of proton form
factors, where the angular (Rosenbluth) separation from
unpolarized scattering did not yield the correct result for
the electric form factor, due to the dominance of the
magnetic contribution, and only separating the electric
form factor from the magnetic one by using polarization
has yielded a break through. See [12,13] for reviews.) It is
desirable to find an observable sensitive to !M1 alone, such
that the latter could be determined independently of "E1.
According to the leading-order LEX for cross sections
involving linearly polarized photons [14], the difference
of cross sections for photons polarized perpendicular or
parallel to the scattering plane,

ðd#? " d#jjÞ=d! (3)

depends only on "E1, while the combination

ðcos2$d#? " d#jjÞ=d! (4)

only on !M1. New experiments at the Mainz Microtron
(MAMI) and the High Intensity Gamma Source (HIGS) are
planned to measure these two combinations in order to
extract "E1 and !M1 independently. This Letter aims to
show that !M1 can directly be extracted from the beam
asymmetry,

"3 $
d#jj " d#?
d#jj þ d#?

; (5)

and that such extraction is potentially more accurate than
the one based on the observable given by Eq. (4).

Indeed, applying the LEX for the beam asymmetry of
proton Compton scattering, we arrive at the following
result:

"3 ¼ "ðBÞ
3 " 4M!2 cos$ sin2$

"emð1þ cos2$Þ2 !M1 þOð!4Þ; (6)

where "ðBÞ
3 is the exact Born contribution, while

! ¼ s"M2 þ 1
2 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 " t
p ; $ ¼ arccos
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1þ t

2!2

#
(7)

are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX, the formula is valid for! and $ being the energy and
angle in the lab or center-of-mass frame.

Equation (6) shows that the leading (in LEX) effect of
the electric polarizability cancels out, while the magnetic

polarizability remains. Hence, our first claim is that a low-
energy measurement of "3 can in principle be used to
extract !M1 independently of "E1, just as it was proposed
for the combination of polarized cross sections given in
Eq. (4).
In reality the low-energy Compton experiments on the

proton are difficult because of small cross sections and
overwhelming QED backgrounds. Precision measurement
only becomes feasible for photon-beam energies above
60 MeV and scattering angles greater than 40 degrees.
The upcoming experiments at HIGS and MAMI are
planned for the energies between 80 and 150 MeV. As
mentioned above, at these energies the effect of higher-
order terms may become substantial. One way to see it is to
compare the LEX result with the dispersion-relation cal-
culations or calculations based on chiral perturbation
theory.
Figures 2 and 3 demonstrate such a comparison of the

leading-LEX result to the next-next-to-leading order
(NNLO) BChPT result of Ref. [4] for the two observables
defined in Eqs. (4) and (5). The observables are plotted for
the case of proton Compton scattering as a function of
magnetic polarizability of the proton. From Fig. 2 one sees
that for the beam energy of 100 MeV the LEX is in a good
agreement with the BChPT result, especially for the
forward directions (left panels).
As expected we observe a significant sensitivity of these

observables to !M1. However, the conventional observable
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FIG. 2 (color online). Beam asymmetry "3—upper panel, and
the linear combination of polarized cross sections defined in
Eq. (4)—lower panel, shown as function of !M1 for fixed photon
energy of 100 MeV and scattering angles of 60 (left panels) and
120 (right panels) degrees. The curves are as follows: dashed
green—Born contribution; dash-dotted magenta—the leading
LEX formula Eq. (6); red solid—NNLO BChPT [4].
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energy such as LEX. At the energies around the pion-
production threshold one obtains a very substantial
sensitivity to polarizabilities but needs to resort to a
model-dependent approach in order to extract them (see
[10,11] for reviews).

The magnetic polarizability !M1 seems to be affected
the most: the central value of the BChPT calculation is a
factor of 2 larger than the PDG value. This is attributed to
the dominance of "E1 in the unpolarized cross section.
(The problem is quite similar to the case of proton form
factors, where the angular (Rosenbluth) separation from
unpolarized scattering did not yield the correct result for
the electric form factor, due to the dominance of the
magnetic contribution, and only separating the electric
form factor from the magnetic one by using polarization
has yielded a break through. See [12,13] for reviews.) It is
desirable to find an observable sensitive to !M1 alone, such
that the latter could be determined independently of "E1.
According to the leading-order LEX for cross sections
involving linearly polarized photons [14], the difference
of cross sections for photons polarized perpendicular or
parallel to the scattering plane,

ðd#? " d#jjÞ=d! (3)

depends only on "E1, while the combination

ðcos2$d#? " d#jjÞ=d! (4)

only on !M1. New experiments at the Mainz Microtron
(MAMI) and the High Intensity Gamma Source (HIGS) are
planned to measure these two combinations in order to
extract "E1 and !M1 independently. This Letter aims to
show that !M1 can directly be extracted from the beam
asymmetry,

"3 $
d#jj " d#?
d#jj þ d#?

; (5)

and that such extraction is potentially more accurate than
the one based on the observable given by Eq. (4).

Indeed, applying the LEX for the beam asymmetry of
proton Compton scattering, we arrive at the following
result:

"3 ¼ "ðBÞ
3 " 4M!2 cos$ sin2$

"emð1þ cos2$Þ2 !M1 þOð!4Þ; (6)

where "ðBÞ
3 is the exact Born contribution, while

! ¼ s"M2 þ 1
2 tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4M2 " t
p ; $ ¼ arccos
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are the photon energy and scattering angle in the Breit
(brick-wall) reference frame. In fact, to this order in the
LEX, the formula is valid for! and $ being the energy and
angle in the lab or center-of-mass frame.

Equation (6) shows that the leading (in LEX) effect of
the electric polarizability cancels out, while the magnetic

polarizability remains. Hence, our first claim is that a low-
energy measurement of "3 can in principle be used to
extract !M1 independently of "E1, just as it was proposed
for the combination of polarized cross sections given in
Eq. (4).
In reality the low-energy Compton experiments on the

proton are difficult because of small cross sections and
overwhelming QED backgrounds. Precision measurement
only becomes feasible for photon-beam energies above
60 MeV and scattering angles greater than 40 degrees.
The upcoming experiments at HIGS and MAMI are
planned for the energies between 80 and 150 MeV. As
mentioned above, at these energies the effect of higher-
order terms may become substantial. One way to see it is to
compare the LEX result with the dispersion-relation cal-
culations or calculations based on chiral perturbation
theory.
Figures 2 and 3 demonstrate such a comparison of the

leading-LEX result to the next-next-to-leading order
(NNLO) BChPT result of Ref. [4] for the two observables
defined in Eqs. (4) and (5). The observables are plotted for
the case of proton Compton scattering as a function of
magnetic polarizability of the proton. From Fig. 2 one sees
that for the beam energy of 100 MeV the LEX is in a good
agreement with the BChPT result, especially for the
forward directions (left panels).
As expected we observe a significant sensitivity of these

observables to !M1. However, the conventional observable
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Eq. (4)—lower panel, shown as function of !M1 for fixed photon
energy of 100 MeV and scattering angles of 60 (left panels) and
120 (right panels) degrees. The curves are as follows: dashed
green—Born contribution; dash-dotted magenta—the leading
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New Mainz data for Compton beam asymmetry
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Beam asymmetry Σ
3
 : Preliminary results

17

Eγ = 120 -140 MeV

Very Preliminary!

Curves: N. Krupina, V. Pascalutsa  [PRL 110, 262001 (2013)]

V. Sokhoyan, E. Downie et al. 
[A2 Coll.]

Data taken:  28.05. – 17.06.2013, 327 h

first data on this 
observable below pion 
production threshold! 

better precision needed!!



Vladimir Pascalutsa — Beyond the proton radius — FKK-15 — Budapest, Oct 13, 2015

Predictions of HBChPT vs BChPT
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Let us emphasize that we do not include the errors due to the uncertainty in the values
of parameters in Table II, or due to the O(p5/∆2) effects which stem from graphs with two
∆ propagators. Our errors are thus underestimated, however they can directly serve as an
indicator of sensitivity to the polarizability LECs at O(p4).

IV. PROTON POLARIZABILITIES

The chiral-loop contribution to scalar polarizabilities of the proton which arise from the
NNLO calculation of the Compton amplitude is given in the Appendix A. In addition, we
have the tree-level ∆(1232) contribution from graphs (14) in Fig. 4 and its crossed, given
by [43]:

α (∆-excit.) = − 2e2g2
E

4π(MN + M∆)3
≃ −0.1 , (28)

β (∆-excit.) =
2e2g2

M

4π(MN + M∆)2∆
≃ 7.1 . (29)

Here and in what follows the numerical values are given in the units of 10−4 fm3.
The numerical composition of the full result thus looks as follows:

α = 6.8︸︷︷︸
O(p3)

+ (−0.1) + 4.1︸ ︷︷ ︸
O(p4/∆)

= 10.8 , (30)

β = −1.8︸︷︷︸
O(p3)

+ 7.1 − 1.3︸ ︷︷ ︸
O(p4/∆)

= 4.0 . (31)

As explained above, a natural estimate of O(p4) contributions yields an uncertainty of at
least ±0.7 on these values. In Fig. 5 this result, shown by the red blob, is compared with
the empirical information, and with the ∆-less O(p4) HBχPT result of Beane et al. [42].

We can clearly see a few-sigma discrepancy of our result with the TAPS-MAMI deter-
mination of polarizabilities [9]. On the other hand, as shown in the next section, our result
agrees with TAPS data for the Compton differential cross sections. Of course we compare
with the data at the lower energies end (below the pion threshold) where polarizabilities
play the prominent role. The extraction of the polarizabilities in [9] has also been influenced
by data above the ∆-resonance region to which we cannot compare. Clearly an extraction
of scalar polarizabilities based on the data of 400 MeV and higher could be affected by un-
controlled model dependencies and needs to be avoided. Excluding the higher-energy data
from the TAPS analysis could help to resolve the apparent discrepancy between the theory
and experiment in Fig. 5.

In Fig. 6 we show the pion mass dependence of proton polarizabilities in both BχPT
and HBχPT. The difference between the two for the magnetic polarizability (lower panel)
at O(p3) is stunning (compare the blue dashed and violet dotted curves). The region of
applicability of the HB expansion is apparently limited here to essentially the chiral limit,
mπ → 0. For any finite pion mass, the BχPT and HBχPT results come out to be of a similar
magnitude but of the opposite sign. Similar picture is observed for the π∆ loops arising at
O(p4/∆). In fact, we have checked that in the limit of vanishing ∆-nucleon mass splitting
(∆ → 0), the considered πN and π∆ loops give (up to the spin-isospin factors) the same
result.
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Effective theory of the !„1232… resonance in Compton scattering off the nucleon
Vladimir Pascalutsa* and Daniel R. Phillips†

Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701
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We formulate a new power-counting scheme for a chiral effective-field theory of nucleons, pions, and #s.
This extends chiral perturbation theory into the #-resonance region. We calculate nucleon Compton scattering
up to next-to-leading order in this theory. The resultant description of existing $p cross-section data is very
good for photon energies up to about 300 MeV. We also find reasonable numbers for the spin-independent
polarizabilities %p and &p .

DOI: 10.1103/PhysRevC.67.055202 PACS number!s": 14.20.Dh, 12.39.Fe, 13.60.Fz, 25.20.Dc

I. INTRODUCTION

Compton scattering on the proton ($p) and the deuteron
($D) provides a clean and unique probe of nucleon electro-
magnetic structure, revealing information different to that
obtained in electron scattering. During the last decade a
number of excellent experimental programs have been dedi-
cated to these two processes !see Refs. '1–5( and '6–10(,
respectively". At low photon energies, these experiments
probe the static properties of the nucleon, such as its electric
charge, magnetic moment, and polarizabilities. Above the
pion-production threshold, the process becomes dominated
by the excitation of resonances, most prominently the
#(1232) isobar. Many theoretical methods aim at under-
standing this process in both the low-energy and the reso-
nance region. In particular, significant progress has been
made recently using dispersion relations '11,12( and effec-
tive Lagrangian models '13–15(. On the other hand, previ-
ous calculations using chiral perturbation theory ()PT) ap-
pear to work only at low photon energies—energies at or
below the pion-production threshold '16,17(. This present
study attempts to extend these )PT calculations above the
pion threshold and into the #-resonance region.
In the low-energy regime, )PT seems to work extremely

well. At next-to-leading order !NLO", i.e., third order in
small momenta '!O(q3)( , heavy-baryon !HB" )PT for the
electric and magnetic polarizabilities predicts '18,19(:

%p!%n!
5*%

6m*
! gA
4* f*

" 2!12.2"10#4 fm3, !1"

&p!&n!
*%

12m*
! gA
4* f *

" 2!1.2"10#4 fm3, !2"

where %!e2/4*#1/137, gA#1.26, f*#93 MeV, and m*

#139 MeV.1 Since there are no Compton counterterms
present at O(q3), this is a genuine prediction of )PT—a
prediction which, at least for the proton, is in remarkable
agreement with recent extractions of these quantities from
low-energy data, e.g., Ref. '20(:

%p!!12.1$1.1$0.5""10#4 fm3, !3"

&p!!3.2$1.1$0.1""10#4 fm3. !4"

Here the first error is statistical, and the second one repre-
sents the theory error of the fit to data.
However, the agreement of the NLO HB)PT prediction

with the experimental $p cross-section data is good only up
to photon energies +#100 MeV '16(. The recent NNLO
'O(q4)( calculation '17( agrees with experiment to slightly
higher energies, but above +#120 MeV significant discrep-
ancies begin to appear, most notably at backward angles.
This is perhaps not surprising, since the #-isobar excitation
is not included explicitly in this chiral expansion. And, as we
shall argue, the breakdown scale of )PT without an explicit
# is set essentially by the #-nucleon mass difference:

#,M##MN-293 MeV. !5"

Thus, to extend the region of )PT applicability to +.# , the
# must be included as an explicit degree of freedom.
The # contribution for the Compton amplitude had al-

ready been analyzed using chiral effective Lagrangians with
explicit #s in Refs. '21–23(. These studies focused mainly
on nucleon polarizabilities. The predictions made in Refs.
'19,21,22( are obscured by off-shell ambiguities, in particu-
lar by the so-called off-shell parameters that control the in-
famous spin-1/2 sector of the spin-3/2 # field. In a ‘‘reason-
able’’ range for these parameters the # contribution to &p

(#)

varies between 0 and 14"10#4fm3 '22(. In contrast, Hem-
mert et al. '23(, to next-to-leading order in their small scale
expansion !SSE" '24(, found a result which was independent

*Email address: vlad@phy.ohiou.edu
†Email address: phillips@phy.ohiou.edu

1Throughout this paper the designations LO, NLO, etc. refer to the
order in the $N amplitude. These one-loop results are, strictly
speaking, leading-order predictions for %p and &p , but we refer to
them as next-to-leading order !NLO" since Eq. !1" is derived by
considering the NLO result for the nucleon Compton amplitude.
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HBChPT@NLO: 

The Delta contribution is 
accompanied by “promoted” LECs, 
hence not predictive

Griesshammer & Hemmert (2004) 
Griesshammer, McGovern, Phillips (2012)

Lattice QCD data expected soon


