
DrainBoss

A Drain Rate Controller for

ARC/HTCondor

Introduction

This talk describes DrainBoss, which is a proportional integral

(PI) controller with conditional logic that strives to maintain

the correct ratio between single-core and multi-core jobs in an

ARC/HTCondor cluster.

Steve Jones

University of Liverpool

3/27/2015 DrainBoss
2

3/27/2015 DrainBoss

 3

Problem

• Consider a node with eight cores, running eight single core

jobs. One is the first to end; a slot becomes free.

• But say the highest priority queued job needs eight cores.

• The newly freed slot is not wide enough to take it, so it has

to wait.

• Should the scheduler use the slot for a waiting single core

job, or hold it back for the other seven jobs to end?

• If it holds jobs back, then resources are wasted.

• If it runs another single core job, then the multicore job has

no prospect of ever running.

Multicore jobs need all lanes

clear at the right time

3/27/2015 Drain Boss
4

Condor's Solution

• The solution that Condor provides has two rules: periodically

drain down nodes so that a multicore job can fit on them,

and start multicore jobs in preference to single core jobs so

they get on the newly drained nodes.

• This is implemented using the Condor DEFRAG daemon, and

various job priority parameters. The daemon has parameters

which control the way nodes are selected and drained for

multicore jobs.

3/27/2015 DrainBoss
5

DEFRAG Daemon

• The version we use, 8.2.2, is good (less buggy)

• Main parameters:

– MAX_CONCURRENT_DRAINING - Don't let more than this drain at once

– DRAINING_MACHINES_PER_HOUR - Never start more than this many

draining per hour

– MAX_WHOLE_MACHINES - Don't bother draining if this many machines

already have wide slot

• State constituting a WHOLE_MACHINE defined in an

expression (classad)

• Tailor those constraints to get the drain rate you “want”;

can be automated in (e.g.) cron.

• ClassAds very flexible for tailoring functionality, but they

are not a “programing language”.

3/27/2015 Drain Boss

 6

Daemon Performance

• Modifying the daemon parameters over a period of 2.5

weeks while collecting data showed:

• avg=121.82

• st. dev=63.07

• wastage: 5.21

3/27/2015 Drain Boss

 7

Daemon Performance

• It seems a bit scrappy...but…

• I didn’t do much systematic testing to establish a baseline.

• And I can't blame the daemon anyway – I was:

– modifying it,

– trying different rates,

– different limits,

– automatic adjustments and

– the job traffic was sporadic.

• But I wondered what else is available?

3/27/2015 DrainBoss
8

Commercial “Solutions”

3/27/2015 DrainBoss
9

Feedback Ideas

• There is no off-the-shelf solution, but what if if we turn the

problem around and found a way to tell the cluster “We

want multicore jobs to use (say) 250 slots”? How could that

be implemented.

• The choices appear to be either feedback or feedforward. A

feedforward scheme would examine the traffic coming from

upstream and try to make adjustments to account for it. A

feedback loop looks at the state now and in the past and

tries to guess what might happen in future based on that.

• Feedforward looked hard, while feedback seemed easy. But

it doesn't work on random inputs. So are the inputs random?

• No. The next plot shows typical multicore and singlecore

waiting jobs at our site. It’s being level controlled by

something upstream, at ~ 600 jobs.
3/27/2015 DrainBoss

10

Waiting jobs

3/27/2015 DrainBoss
11

DrainBoss Principles

• It’s not random, so a home-made feedback controller might work.

• The objectives are to maximise the usage of the cluster and get good

mix of both single-core and multicore jobs by striving to obtain good

control when submission is ideal, but not cause harmful effects when

submission deteriorates.

• It has a process controller which senses condition of cluster and adjusts

how nodes are drained and put back to obtain a certain amount of

predictability.

• It has simple state logic to try to minimise negative corrections and deal

with irregular delivery of multicore and single core jobs.

• It also needs a mechanism to start multicore jobs in preference to single

core jobs.

• The prototype is implemented as a script (drainBoss.py) not a daemon.

3/27/2015 Drain Boss

 12

Controller Principles

• The process controller provides the feedback control

system.

• It measures some variable, and finds the error compared to

some setpoint.

• Then it corrects the process to eliminate the error.

• DrainBoss uses Proportional and Integral terms.

• Proportional term (gain) acts proportionally to the error.

• Pure proportional control is sensitive to long time lags.

• Integral action sums the error over time; output grows to

offset error.

• Proportional part + integral part eventually overcomes the

error, I hope.

3/27/2015 DrainBoss

13

State Logic Principles

Queue state

Mc jobs queues No Yes No Yes

Sc jobs queued No No Yes Yes

Action:

Start drain if

nec.

No Yes No Yes

Cancel current

drains

No No Maybe No

3/27/2015 DrainBoss
14

State Logic Justification

• No constant stream of mc and sc jobs jobs; if no multicores

queued, then don't start any draining - no jobs to fill the

slots.

• Don't stop drains early (1 exception). Drains are a cost, and

cancelling throws away “achievement”. Drains are left to

finish, in case multicore jobs come along soon.

• But: if there are no multicores but some singlecores queued,

option to cancel on-going drains, otherwise singlecores

would be held back for “no valid reason” violating the

objective to maximise usage. Maybe a singlecore bird in the

hand is worth two multicore birds in the bush?

3/27/2015 Drain Boss
15

The price of a bush bird

3/27/2015 DrainBoss
16

• Draining on 19th March to free mc slots after drought. Early

on 20th, a short mc drought occurred, sc jobs still queued.

• So DrainBoss cancelled all draining, because a bird “in the

hand...”. Hm... now we have to wait another long time.

• Result: option added called --keepgoing

Parameters

• # ./drainBoss.py -h

• This program controls the drain rate on a condor server

• using a process controller.

• The options to this program are:

• -s --setpoint 250 the setpoint value

• -p --propband 200 proportional band

• -r --reset 10000 reset time

• -l --lookback 86400 look back time

• -m --maxtodrain 9 max that can drain at once

• -t --test test mode

• -k --keepgoing keep going, don't cancel draining

3/27/2015 DrainBoss
17

Parameters

-s 250 The setpoint, telling the controller to try

to keep 250 multicore jobs running.

-p 750 The proportional band. This is a wide

band, greatly limiting effect of

proportional term.

-r 43600 The “integral time”, which controls the

importance of the accumulated error in

the final correction. Used in

denominator, so bigger number makes

accumulated error less important.

-- lookback 86400 How far back to look at accumulated

error, to avoid windup.

--maxtodrain Extent of controller output; maximum

size of correction (minimum is zero).

--keepgoing Do not cancel drains even when zero

multicores while singlecores queued.

3/27/2015 DrainBoss
18

Running it

#!/bin/bash

while [1]; do

 date;

 ./drainBoss.py -s 250 -p 750 -r 43600 \

 --lookback 86400 --maxtodrain 7 --keepgoing

 sleep 300;

done >> drainBoss.log

3/27/2015 DrainBoss
19

Starting and stopping draining

• Each time drainBoss runs, it potentially starts and stops

drains.

• Starting drains: n nodes are selected by randomising the list

of nodes and selecting the first n from the list that:

• are not not draining and

• have no slot composed of 8 or more “unislots”.

• Stopping drains: Each draining node that has any slot (used

or free) composed of 8 or more “unislots” is put back in use.

• Thus the cluster is (almost) limited to max of one multicore

job per node.

3/27/2015 DrainBoss
20

Preferring multicore jobs

• No matter how much we drain, if the system prefers

singlecore over multicore, the multicore will not get

scheduled.

• Even if mc and sc are equal, risk that “achievement” after

draining is thrown away if (say) one sc spoils the newly

drained node.

• Need to systematically prefer multicore to achieve objective

to maximise the usage of the cluster.

• Tried several ways, inc.

• Raise the user priority of multicore jobs.

• Setting the GROUP_SORT_EXPR.

3/27/2015 DrainBoss
21

Preferring multicore jobs

• Raise the user priority of multicore jobs; brutally effective,

using a cron job that finds mc jobs and runs

“condor_userprio jobno –setfactor 250”

• GROUP_SORT_EXPR; Needs accounting groups. This setting

seemed to work OK for a while by preferring High Priority

and test/ops jobs, then mc jobs, and sc jobs last:
GROUP_SORT_EXPR = ifThenElse(AccountingGroup=?="<none>",

3.4e+38, ifThenElse(AccountingGroup=?="group_HIGHPRIO", -23,

ifThenElse(AccountingGroup=?="group_DTEAM", -18,

ifThenElse(AccountingGroup=?="group_OPS", -17,

ifThenElse(regexp("mcore",AccountingGroup),

ifThenElse(GroupQuota > 0 && GroupResourcesInUse > 0, (-1 *

GroupQuota) / GroupResourcesInUse ,-1), ifThenElse(GroupQuota

> 0, GroupResourcesInUse/GroupQuota, 3.2e+38))))))

3/27/2015 DrainBoss

22

WARNINGS

• The GROUP_SORT_EXPR works in an opposite manner to how

it is described in the manual for version 8.2.2. So smaller

numbers = higher priority in the sort.

• Needs to be tuned; tuning was done by hand although there

are supposedly technical ways to tune these PI systems more

accurately that I hope to look at in future.

3/27/2015 DrainBoss

 23

Performance

• I'll show some plots of the performance of the controller

that cover interesting periods.

• I'll show it “warts and all”, but I'll compare the performance

with a time-line of changes that partially explain some of

the observations

• With such large variations, it's hard to be sure that it works,

let alone whether it works better than an open loop

approach.

• But time will tell.

3/27/2015 DrainBoss
24

z

3/27/2015 DrainBoss
25

The proportional controller was started 16th Feb. The plot

shows a stretch of apparently good control. But it doesn't last.

Second Glance

3/27/2015 DrainBoss
26

It was a mirage. In the bigger picture, the control deteriorates.

It hunts around like this until 23rd, when I put in the integral

term, which I tune for a few days.

Integral Action

3/27/2015 DrainBoss
27

Once tuned, it seemed to control (with an offset) up until the

5th, when the submission system became too irregular.

Integral Action

3/27/2015 DrainBoss
28

The submissions improved around the 9th. I intervened on the

12th to try to reduce the control offset.

But if picked a poor setting

3/27/2015 DrainBoss
29

• But I chose poor settings. This may be down to a

misunderstanding about GROUP_SORT_EXPR which I

corrected on the 16th.

After the fix

3/27/2015 DrainBoss
30

• Newer data shows the controller slowly recovering. The

submissions deteriorate on the 18th.

• Note: this plot shows data during a poor submission period;

it was omitted for clarity in the earlier plots.

Wastage

Qualification: I omitted data during periods where the

submission system delivered no multicore jobs – you can't

blame the controller for a job drought. And I have omitted

data between the 12th and 16th of Feb, when a poor

GROUP_SORT_EXPR setting was used.

• avg=298.61 (versus 121.82)

• st. dev=71.44 (versus 63.07)

• wastage - 2.43 (versus 5.31)

3/27/2015 DrainBoss
31

How’s it doing this morning

3/27/2015 DrainBoss
32

• A bit low but moving in the right direction after a job

drought 2 days ago.

• Emphasises need for a ramp up function when process is

restarting.

Further work needed

• Port to other batch systems; e.g. torque.

• Error handling (it ignores them now)

• Ramp up function (PID controllers usually have them)

• Better selection of node to drain (largest is best)

• Integrate into CONDOR system, e.g. internal data structures

• Make into daemon, with clock to set run period.

• Much more systematic testing and tuning.

• Tuning guidelines.

• Release visualisation tools.

3/27/2015 DrainBoss
33

Conclusions

• Promising results:

– Inputs not random.

– Control can be achieved with good job delivery and payload pickup.

• Problems:

– Erratic jobdelivery or poor payload pickup spoil things.

• I haven't seen anything to show the controller is worse than

the DEFRAG daemon.

• That’s faint praise, I know, but it’s just a prototype.

• The wastage while it operates is low.

• It still has an offset that I haven’t tried to explain yet.

• Overall I expect we'll keep using it unless something drastic

happens.

 3/27/2015 DrainBoss
34

Finally

• The program is here:

http://hep.ph.liv.ac.uk/~sjones/drainBoss.py

• The manual is/will be here:

https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/Co

ndor_Cluster

• My email is sjones@hep.ph.liv.ac.uk

• Thanks are due to A. Lahiff (RAL) for several ideas and

suggestions.

• Have a safe journey home.

3/27/2015 DrainBoss

35

