
DrainBoss
A Drain Rate Controller for ARC/

HTCondor

Introduction

This talk describes DrainBoss, which is a proportional integral
(PI) controller with conditional logic that strives to maintain

the correct ratio between single-core and multi-core jobs in an
ARC/HTCondor cluster.

Steve Jones

University of Liverpool

27/03/2015 DrainBoss
2

27/03/2015 DrainBoss
 3

Problem

•  Consider a node with eight cores, running eight single core
jobs. One is the first to end; a slot becomes free.

•  But say the highest priority queued job needs eight cores.
•  The newly freed slot is not wide enough to take it, so it has

to wait.
•  Should the scheduler use the slot for a waiting single core

job, or hold it back for the other seven jobs to end?
•  If it holds jobs back, then resources are wasted.
•  If it runs another single core job, then the multicore job has

no prospect of ever running.

Multicore jobs need all lanes
clear at the right time

27/03/2015 Drain Boss
4

Condor's Solution

•  The solution that Condor provides has two rules: periodically
drain down nodes so that a multicore job can fit on them,
and start multicore jobs in preference to single core jobs so
they get on the newly drained nodes.

•  This is implemented using the Condor DEFRAG daemon, and
various job priority parameters. The daemon has parameters
which control the way nodes are selected and drained for
multicore jobs.

27/03/2015 DrainBoss
5

DEFRAG Daemon

•  The version we use, 8.2.2, is good (less buggy)
•  Main parameters:

–  MAX_CONCURRENT_DRAINING - Don't let more than this drain at once
–  DRAINING_MACHINES_PER_HOUR - Never start more than this many

draining per hour
–  MAX_WHOLE_MACHINES - Don't bother draining if this many machines

already have wide slot

•  State constituting a WHOLE_MACHINE defined in an
expression (classad)

•  Tailor those constraints to get the drain rate you “want”;
can be automated in (e.g.) cron.

•  ClassAds very flexible for tailoring functionality, but they
are not a “programing language”.

27/03/2015 Drain Boss
 6

Daemon Performance

•  Modifying the daemon parameters over a period of 2.5
weeks while collecting data showed:

•  avg=121.82
•  st. dev=63.07
•  wastage: 5.21

27/03/2015 Drain Boss
 7

Daemon Performance

•  It seems a bit scrappy...but…

•  I didn’t do much systematic testing to establish a baseline.

•  And I can't blame the daemon anyway – I was:
–  modifying it,
–  trying different rates,
–  different limits,
–  automatic adjustments and
–  the job traffic was sporadic.

•  But I wondered what else is available?

27/03/2015 DrainBoss
8

Commercial “Solutions”

27/03/2015 DrainBoss
9

Feedback Ideas

•  There is no off-the-shelf solution, but what if if we turn the
problem around and found a way to tell the cluster “We
want multicore jobs to use (say) 250 slots”? How could that
be implemented.

•  The choices appear to be either feedback or feedforward. A
feedforward scheme would examine the traffic coming from
upstream and try to make adjustments to account for it. A
feedback loop looks at the state now and in the past and
tries to guess what might happen in future based on that.

•  Feedforward looked hard, while feedback seemed easy. But
it doesn't work on random inputs. So are the inputs random?

•  No. The next plot shows typical multicore and singlecore
waiting jobs at our site. It’s being level controlled by
something upstream, at ~ 600 jobs.

27/03/2015 DrainBoss
10

Waiting jobs

27/03/2015 DrainBoss
11

DrainBoss Principles

•  It’s not random, so a home-made feedback controller might work.
•  The objectives are to maximise the usage of the cluster and get good

mix of both single-core and multicore jobs by striving to obtain good
control when submission is ideal, but not cause harmful effects when
submission deteriorates.

•  It has a process controller which senses condition of cluster and adjusts
how nodes are drained and put back to obtain a certain amount of
predictability.

•  It has simple state logic to try to minimise negative corrections and deal
with irregular delivery of multicore and single core jobs.

•  It also needs a mechanism to start multicore jobs in preference to single
core jobs.

•  The prototype is implemented as a script (drainBoss.py) not a daemon.

27/03/2015 Drain Boss
 12

Controller Principles

•  The process controller provides the feedback control system.
•  It measures some variable, and finds the error compared to

some setpoint.
•  Then it corrects the process to eliminate the error.
•  DrainBoss uses Proportional and Integral terms.
•  Proportional term (gain) acts proportionally to the error.
•  Pure proportional control is sensitive to long time lags.
•  Integral action sums the error over time; output grows to

offset error.
•  Proportional part + integral part eventually overcomes the

error, I hope.

27/03/2015 DrainBoss
13

State Logic Principles

Queue state

Mc jobs queues No Yes No Yes

Sc jobs queued No No Yes Yes

Action:

Start drain if
nec.

No Yes No Yes

Cancel current
drains

No No Maybe No

27/03/2015 DrainBoss
14

State Logic Justification

•  No constant stream of mc and sc jobs jobs; if no multicores
queued, then don't start any draining - no jobs to fill the
slots.

•  Don't stop drains early (1 exception). Drains are a cost, and
cancelling throws away “achievement”. Drains are left to
finish, in case multicore jobs come along soon.

•  But: if there are no multicores but some singlecores queued,
option to cancel on-going drains, otherwise singlecores
would be held back for “no valid reason” violating the
objective to maximise usage. Maybe a singlecore bird in the
hand is worth two multicore birds in the bush?

27/03/2015 Drain Boss
15

The price of a bush bird

27/03/2015 DrainBoss
16

•  Draining on 19th March to free mc slots after drought. Early
on 20th, a short mc drought occurred, sc jobs still queued.

•  So DrainBoss cancelled all draining, because a bird “in the
hand...”. Hm... now we have to wait another long time.

•  Result: option added called --keepgoing

Parameters

•  # ./drainBoss.py -h!
•  This program controls the drain rate on a condor server !
•  using a process controller.!

•  The options to this program are:!
•  -s --setpoint 250 the setpoint value!
•  -p --propband 200 proportional band!
•  -r --reset 10000 reset time!
•  -l --lookback 86400 look back time!
•  -m --maxtodrain 9 max that can drain at once!
•  -t --test test mode!
•  -k --keepgoing keep going, don't cancel draining !

27/03/2015 DrainBoss
17

Parameters

-s 250 The setpoint, telling the controller to try
to keep 250 multicore jobs running.

-p 750 The proportional band. This is a wide
band, greatly limiting effect of
proportional term.

-r 43600 The “integral time”, which controls the
importance of the accumulated error in
the final correction. Used in
denominator, so bigger number makes
accumulated error less important.

-- lookback 86400 How far back to look at accumulated
error, to avoid windup.

--maxtodrain Extent of controller output; maximum
size of correction (minimum is zero).

--keepgoing Do not cancel drains even when zero
multicores while singlecores queued.

27/03/2015 DrainBoss
18

Running it

#!/bin/bash!
while [1]; do !
 date; !
 ./drainBoss.py -s 250 -p 750 -r 43600 \!
 --lookback 86400 --maxtodrain 7 --keepgoing!
 sleep 300; !
done >> drainBoss.log!
!
!

27/03/2015 DrainBoss
19

Starting and stopping draining

•  Each time drainBoss runs, it potentially starts and stops
drains.

•  Starting drains: n nodes are selected by randomising the list
of nodes and selecting the first n from the list that:

•  are not not draining and
•  have no slot composed of 8 or more “unislots”.
•  Stopping drains: Each draining node that has any slot (used

or free) composed of 8 or more “unislots” is put back in use.
•  Thus the cluster is (almost) limited to max of one multicore

job per node.

27/03/2015 DrainBoss
20

Preferring multicore jobs

•  No matter how much we drain, if the system prefers
singlecore over multicore, the multicore will not get
scheduled.

•  Even if mc and sc are equal, risk that “achievement” after
draining is thrown away if (say) one sc spoils the newly
drained node.

•  Need to systematically prefer multicore to achieve objective
to maximise the usage of the cluster.

•  Tried several ways, inc.
•  Raise the user priority of multicore jobs.
•  Setting the GROUP_SORT_EXPR.

27/03/2015 DrainBoss
21

Preferring multicore jobs

•  Raise the user priority of multicore jobs; brutally effective,
using a cron job that finds mc jobs and runs
“condor_userprio jobno –setfactor 250”

•  GROUP_SORT_EXPR; Needs accounting groups. This setting
seemed to work OK for a while by preferring High Priority
and test/ops jobs, then mc jobs, and sc jobs last:

GROUP_SORT_EXPR = ifThenElse(AccountingGroup=?="<none>", 3.4e
+38, ifThenElse(AccountingGroup=?="group_HIGHPRIO", -23,
ifThenElse(AccountingGroup=?="group_DTEAM", -18,
ifThenElse(AccountingGroup=?="group_OPS", -17,
ifThenElse(regexp("mcore",AccountingGroup),
ifThenElse(GroupQuota > 0 && GroupResourcesInUse > 0, (-1 *
GroupQuota) / GroupResourcesInUse ,-1), ifThenElse(GroupQuota
> 0, GroupResourcesInUse/GroupQuota, 3.2e+38))))))!

27/03/2015 DrainBoss
22

WARNINGS

•  The GROUP_SORT_EXPR works in an opposite manner to how
it is described in the manual for version 8.2.2. So smaller
numbers = higher priority in the sort.

•  Needs to be tuned; tuning was done by hand although there
are supposedly technical ways to tune these PI systems more
accurately that I hope to look at in future.

27/03/2015 DrainBoss
 23

Performance

•  I'll show some plots of the performance of the controller
that cover interesting periods.

•  I'll show it “warts and all”, but I'll compare the performance
with a time-line of changes that partially explain some of
the observations

•  With such large variations, it's hard to be sure that it works,
let alone whether it works better than an open loop
approach.

•  But time will tell.

27/03/2015 DrainBoss
24

z

27/03/2015 DrainBoss
25

The proportional controller was started 16th Feb. The plot
shows a stretch of apparently good control. But it doesn't last.

Second Glance

27/03/2015 DrainBoss
26

It was a mirage. In the bigger picture, the control deteriorates.
It hunts around like this until 23rd, when I put in the integral
term, which I tune for a few days.

Integral Action

27/03/2015 DrainBoss
27

Once tuned, it seemed to control (with an offset) up until the
5th, when the submission system became too irregular.

Integral Action

27/03/2015 DrainBoss
28

The submissions improved around the 9th. I intervened on the
12th to try to reduce the control offset.

But if picked a poor setting

27/03/2015 DrainBoss
29

•  But I chose poor settings. This may be down to a
misunderstanding about GROUP_SORT_EXPR which I
corrected on the 16th.

After the fix

27/03/2015 DrainBoss
30

•  Newer data shows the controller slowly recovering. The
submissions deteriorate on the 18th.

•  Note: this plot shows data during a poor submission period;
it was omitted for clarity in the earlier plots.

Wastage

Qualification: I omitted data during periods where the
submission system delivered no multicore jobs – you can't
blame the controller for a job drought. And I have omitted
data between the 12th and 16th of Feb, when a poor
GROUP_SORT_EXPR setting was used.
•  avg=298.61 (versus 121.82)
•  st. dev=71.44 (versus 63.07)
•  wastage - 2.43 (versus 5.31)

27/03/2015 DrainBoss
31

How’s it doing this morning

27/03/2015 DrainBoss
32

•  A bit low but moving in the right direction after a job
drought 2 days ago.

•  Emphasises need for a ramp up function when process is
restarting.

Further work needed

•  Port to other batch systems; e.g. torque.
•  Error handling (it ignores them now)
•  Ramp up function (PID controllers usually have them)
•  Better selection of node to drain (largest is best)
•  Integrate into CONDOR system, e.g. internal data structures
•  Make into daemon, with clock to set run period.
•  Much more systematic testing and tuning.
•  Tuning guidelines.
•  Release visualisation tools.

27/03/2015 DrainBoss
33

Conclusions

•  Promising results:
–  Inputs not random.
–  Control can be achieved with good job delivery and payload pickup.

•  Problems:
–  Erratic jobdelivery or poor payload pickup spoil things.

•  I haven't seen anything to show the controller is worse than
the DEFRAG daemon.

•  That’s faint praise, I know, but it’s just a prototype.
•  The wastage while it operates is low.
•  It still has an offset that I haven’t tried to explain yet.
•  Overall I expect we'll keep using it unless something drastic

happens.
27/03/2015 DrainBoss

34

Finally

•  The program is here:
http://hep.ph.liv.ac.uk/~sjones/drainBoss.py

•  The manual is/will be here:
https://www.gridpp.ac.uk/wiki/Example_Build_of_an_ARC/
Condor_Cluster

•  My email is sjones@hep.ph.liv.ac.uk

•  Thanks are due to A. Lahiff (RAL) for several ideas and
suggestions.

•  Have a safe journey home.

27/03/2015 DrainBoss
35

