
Two Years of HTCondor at the RAL Tier-1	

Andrew Lahiff, Alastair Dewhurst, John Kelly, Ian Collier	

STFC Rutherford Appleton Laboratory	

	

HEPiX Spring 2015 Workshop	

Outline

•  Introduction	

•  Migration to HTCondor	

•  Experience	

•  Functionality	

•  Monitoring	

•  Ongoing work & future plans	

2

Introduction

•  RAL is a Tier-1 for all 4 LHC experiments	

–  Also support ~12 non-LHC experiments, including non-HEP	

•  Computing resources	

–  560 worker nodes, over 12K cores	

–  Generally have 40-60K jobs submitted per day	

•  Torque / Maui had been used for many years	

–  Many issues	

•  Memory leaks, crashes, constant job submission failures from CEs, …	

–  Severity & number of problems increased as size of farm increased	

–  Missing functionality	

•  e.g. cgroups, hard to integrate with dynamic resources, …	

–  In 2012 decided it was time to start investigating moving to a new batch system	

•  HTCondor was selected	

3

	

	

Migration to HTCondor	

	

	

	

	

	

	

	

	

	

4

Migration to HTCondor

•  Setup main components of new batch system	

(in parallel to the old batch system)	

–  Central managers	

–  A few worker nodes (old hardware)	

–  CEs	

•  After initial testing	

–  Added one generation of older worker nodes (~1000 cores)	

•  Capacity beyond LHC MoU commitment	

–  Requested ATLAS start submitting to the new CEs	

(in addition to the existing CEs associated with the old batch system)	

–  Fixed any issues that came up	

–  Later requested CMS start submitting to the new CEs	

5

Migration to HTCondor

•  While this testing was ongoing	

–  Added monitoring	

•  Nagios	

•  Ganglia	

–  Checked that APEL accounting was accurate & working	

–  Wrote internal documentation	

•  Service description, installation procedures, …	

•  On-call documentation	

•  Next steps	

–  Testing with ALICE, LHCb, & selected non-LHC VOs	

•  Once migration to HTCondor approved by management	

–  Migrated 50% of CPU to HTCondor	

–  Within a few months migrated remaining CPU	

6

Migration to HTCondor

•  We combined	

–  Migration from Torque to HTCondor	

–  Migration from SL5 to SL6	

 therefore re-installed workers nodes from scratch	

•  Alternatives	

–  Remove Torque & add HTCondor	

–  Add HTCondor, then remove Torque later	

•  Can have them running at the same time on the same worker node	

•  We initially did some testing with sleep jobs in HTCondor while production jobs

were running under Torque on the same worker nodes	

7

Migration to HTCondor

•  Migration timeline	

2012 Aug 	
Started evaluating alternatives to Torque / Maui	

	
 	
 (LSF, Grid Engine, Torque 4, HTCondor, SLURM)	

2013 Jun 	
Began testing HTCondor with ATLAS & CMS	

	
 	
~1000 cores from old WNs beyond MoU commitments	

2013 Aug 	
Choice of HTCondor approved by management	

2013 Sep 	
HTCondor declared production service	

	
 	
Moved 50% of pledged CPU resources to HTCondor	

2013 Nov 	
Migrated remaining resources to HTCondor	

	

	

	

	

	

8

	

	

Experience	

	

	

	

	

	

	

	

	

	

9

Experience

•  Experience over past 2 years with HTCondor	

–  Very stable operation	

•  Generally just ignore the batch system & everything works fine	

•  Staff don’t need to spend all their time fire-fighting problems	

–  No more days spent studying the Torque source code trying to understand obscure
error messages	

–  No changes needed as the HTCondor pool increased in size from ~1000 to
>10000 cores	

–  Job start rate much higher than Torque / Maui even when throttled	

•  Farm utilization much better	

–  Upgrades easy	

•  Central managers/CEs: HTCondor restarts itself after detecting binaries have been

updated	

•  Worker nodes: configured to drain themselves then restart after binaries are

updated	

–  Very good support	

10

Experience

•  Significant reduction in numbers of callouts after migration to
HTCondor	

–  None of the callouts below were actually HTCondor’s fault	

	

11

Slow migration of a VM	

Network problems	

CVMFS problem	

Draining worker nodes	

	

	

Functionality	

	

	

	

	

	

	

	

	

	

12

Evolution

•  Features in use at RAL	

Beginning 	
Hierarchical accounting groups	

	
 	
Partitionable slots	

	
 	
Highly available central managers	

	
 	
PID namespaces	

	
 	
Issue with ATLAS pilots killing themselves	

July 2014 	
MOUNT_UNDER_SCRATCH (+ lcmaps-plugins-mount-under-scratch)	

	
Jobs have their own /tmp, /var/tmp	

July 2014 	
CPU cgroups	

	
 	
Jobs restricted to the number of cores they request, unless there are free
	
 	
 cores available	

Feb 2015 	
Memory cgroups	

	
Using soft limits – jobs can exceed the memory they requested if there is
	
 memory available on the machine	

13

Jobs & memory

•  Originally	

–  By default ARC CE constructs PeriodicRemove expression so that if the

ResidentSetSize of the job exceeds the requested memory, the job is killed	

•  After enabling memory cgroups	

–  Thought it would be good to only have the kernel manage memory, so stopped
the ARC CE from including a memory limit in PeriodicRemove	

•  However, found	

–  LHCb analysis jobs using > 80 GB RSS (requested 4 GB)	

–  ATLAS analysis jobs using ~ 10 GB RSS (requested 3 GB)	

•  Therefore, re-enabled the “traditional” memory limits, but configured
to kill jobs if 3x requested memory is exceeded	

–  May reduce this further	

•  Issue with memory cgroups	

–  Under specific circumstances, if one job uses too much memory all cgroups are

killed on the worker node (reported to HTCondor developers)	
 14

Multi-core jobs

•  Current situation	

–  ATLAS have been running multi-core jobs since Nov 2013	

–  CMS started submitting multi-core jobs in early May 2014	

•  Did a little tweaking early last year	

–  Added accounting groups for multi-core jobs	

–  Specified GROUP_SORT_EXPR so that multi-core jobs are considered before

single-core jobs	

–  Defrag daemon enabled, configured so that	

•  Drain 8 cores, not whole nodes	

•  Pick WNs to drain based on how many cores they have that can be freed	

–  Demand for multi-core jobs not known by defrag daemon	

•  By default defrag daemon will constantly drain same number of WNs	

•  Simple cron to adjust defrag daemon configuration based on demand	

–  Uses condor_config_val to change DEFRAG_MAX_CONCURRENT_DRAINING	

15

Multi-core jobs

•  Running & idle multi-core jobs	

	

	

	
 16

Wasted cores

Draining WNs

0.4%	
2.4%	

M
ul

ti
-c

or
e

jo
bs

Al

l j
ob

s

Virtual machines

•  Using HTCondor to manage virtual machines	

–  Makes use of VM universe & some HTCondor features not-commonly used

(e.g. job hooks, custom file transfer plugins, condor_chirp)	

–  Requires libvirtd to be running on worker nodes	

–  Site-instantiated VMs – “vacuum model”	

•  Don’t provide any way for users/VOs to instantiate VMs	

–  See talk by Andrew McNab!
!

17

	

	

Monitoring	

	

	

	

	

	

	

	

	

	

18

Monitoring

•  Monitoring used for the RAL HTCondor pool	

–  Ganglia	

–  Nagios	

–  Elasticsearch	

–  (HTCondor startd cron)	

19

Worker node health check

•  Want to ignore worker nodes as much as possible	

–  Any problems shouldn’t affect new jobs	

•  Startd cron	

–  Script checks for problems on worker nodes	

•  Disk full or read-only	

•  CVMFS	

•  Swap	

•  …	

–  Prevents jobs from starting in the event of problems	

•  If problem with ATLAS CVMFS, then only prevents ATLAS jobs from starting	

•  CVMFS usually “self-heals” eventually	

–  Information about problems made available in machine ClassAds	

•  Can easily identify WNs with problems, e.g.	

!# condor_status –const 'NODE_STATUS =!= "All_OK”’ -af Machine NODE_STATUS!
!lcg0980.gridpp.rl.ac.uk Problem: CVMFS for alice.cern.ch!
!lcg0981.gridpp.rl.ac.uk Problem: CVMFS for cms.cern.ch Problem: CVMFS for lhcb.cern.ch!
!lcg1675.gridpp.rl.ac.uk Problem: Swap in use, less than 25% free!

20

Ganglia

•  condor_gangliad	

–  Runs on a single host (any host)	

–  Gathers daemon ClassAds from the collector	

–  Publishes metrics to ganglia with host spoofing	

•  Uses ganglia library rather than gmetric where possible	

–  Examples	

21

Central manager CE

Ganglia

•  condor_gangliad	

22

Ganglia

•  Custom ganglia plots	

–  gmetric scripts running on a central manager + Perl scripts on ganglia server	

•  If doing this again we would use metrics from condor_gangliad as much as possible
rather than making our own	

23

Nagios checks

•  Central managers	

–  Process check for condor_master	

–  Check for number of collectors visible in the pool	

–  Check for 1 negotiator in the pool	

–  Worker node check	

•  Need a minimum number of worker nodes advertised & willing to run jobs	

•  CEs	

–  Process check for condor_master	

–  Check for schedd being advertised	

•  Worker nodes	

–  Process check for condor_master (won’t trigger pager alarm)	

24

Monitoring using ELK

•  Elasticsearch ELK stack at RAL, mostly used for CASTOR	

•  Adding HTCondor	

–  First step: information about completed jobs	

–  Wrote config file for Logstash to enable history files to be parsed	

–  Added logstash to all machines running schedds	

25

Monitoring using ELK

26

•  ‘Minimal’ resources used	

–  Generally < 80,000 documents, < 500 MB per day	

Monitoring using ELK

•  Search for information about completed jobs (faster than using
condor_history)	

	

	

27

ARC job id

	

	

Ongoing work & future plans	

	

	

	

	

	

	

	

	

	

28

Ongoing work & future plans

•  Integration with private cloud	

–  OpenNebula cloud setup at RAL, currently with ~1000 cores	

–  Want to ensure any idle capacity is used, so why not run virtualized worker

nodes?	

–  Want opportunistic usage which doesn’t interfere with cloud users	

•  Batch system expands into cloud when batch system busy & cloud idle	

•  Batch system withdraws from cloud when cloud becomes busy	

–  Successfully tested, working on moving this into production	

–  See talk by George Ryall	

•  Upgrade worker nodes to SL7	

–  Setup SL6 worker node environment in a chroot, run SL6 jobs in the chroot

using NAMED_CHROOT functionality in HTCondor	

•  Will simplify eventual migration to SL7 – can run both SL6 and SL7 jobs	

–  Successfully tested CMS jobs	

29

Ongoing work & future plans

•  Simplification of worker nodes	

–  Testing use of CVMFS grid.cern.ch for grid middleware	

•  540 packages installed vs 1300 for a normal worker node	

–  HTCondor can run jobs:	

•  In chroots	

•  In filesystem namespaces	

•  In PID namespaces	

•  In memory cgroups	

•  In CPU cgroups	

–  Do we really need pool accounts on worker nodes? 	

•  With the above, one job can’t see any processes or files associated with any other

jobs on the same worker node, even if the same user	

•  Worker nodes and CEs could be much simpler without them!	

30

	

	

Questions?	

	

	

	

	

	

	

	

	

	

31

	

	

Backup slides	

	

	

	

	

	

	

	

	

	

32

Provisioning worker nodes

33

condor_collector condor_negotiator

Worker nodes

condor_startd

condor_rooster

Virtual worker
nodes

condor_startd

ARC/CREAM CEs

condor_schedd

Central manager

Offline
machine
ClassAds

Draining

