
Cloud services at RAL, an Update

26th March 2015

Spring HEPiX, Oxford

George Ryall,

Frazer Barnsley, Ian Collier, Alex Dibbo, Andrew Lahiff

V2.1

Overview

• Background

• Our current set up

• Self-service test & development VMs

• Traceability, security, and logging

• Links with Quattor (Aquilon)

• Expansion of the batch farm into unused capacity

• What next

Background

• Began as small experiment 3 years ago

– Initially using StratusLab & old worker nodes

– Initially very quick and easy to get working

– But fragile, and upgrades and customisations always harder

• Work until last spring was implemented by graduates on 6
month rotations
– Disruptive & variable progress

• Worked well enough to prove usefulness

• Self service VMs proved very popular, though something
of an exercise in managing expectations

• In March 2014, we secured funding for our current
hardware, I became involved –setting up the Ceph cluster

• A fresh technology evaluation led us to move to
OpenNebula.

• In September secured first dedicated effort to build on the
previous 2 ½ years of experiments to produce a service
with a defined service level. Two staff, me full time and
another half time.

Background (2)

• Just launched with a defined, if limited, service level for
users across STFC.

• Integrated in to the existing Tier 1 configuration &
monitoring frameworks (yet to establish cloud specific
monitoring).

• Now have an extra member of staff working on the
 project, bringing us close to two full time equivalents.

Where we are now

Our current set up
• OpenNebula based cloud with a Ceph storage backend

• This has 28 Hypervisors consisting of 892 cores and 3.4TB of
RAM

• We have 750TB of raw storage in the supporting Ceph cluster
(as seen in Alastair Dewhurst’s presentation yesterday,
performance testing described in Alex Dibbo’s presentation
this afternoon)

• This is all connected together at 10Gb/s

• Web Front End and headnode on VMs in our HyperV
production virtulisation infrastructure

• Three node MariaDB/Galera cluster for DB
(again on HyperV)

Self-service test & development VMs

• First use case to be exposed to users in a pre-production
way.

• Provide members of the Scientific Computing Department
(~160 people) with access to VMs on demand for
development work.

• Quickly provides VMs to speed up the development cycle
of various services and offer a testing environment for our
software developers (<1 minute to a useable machine) .

• Clear terms of service and defined level of service that is
currently short of production..

A simple web frontend

• To provide easy access to these VMs we have developed a
simple web front-end running on a VM

• This talks to the OpenNebula head node through its XML
RPC interface

• Provides a simpler, more customised interface for our
users than is available through OpenNebula’s sunstone
interface

The web front end from a users
perspective

The web front end from a users
perspective

User logs in with their organisation wide credentials

(implemented using Kerberos)

The web front end from a users
perspective

The User is presented with a list of their current VMs, a

button to launch more, and an option to

view historical information

The web front end from a users perspective

The User clicks to “Create Machine”

(because they’re lazy they use our auto-generate name

button)

The web front end from a users perspective

The user is presented with a list of possible machine types to launch which is relevant

to them

This is accomplished using OpenNebula groups and active directory user properties.

CPU and Memory are currently pre-set for each type, we can expand

it later by request. We could offer a choice – but we

suspect users, being users, will just

 select the most available with

little thought.

The web front end from a users
perspective

The VM is listed as pending for about 20 seconds,

whilst OpenNebula deploys it on a

hypervisor

The web front end from a users
perspective

Once booted, the user can login with their credentials or

they can SSH in with those same

credentials

The web front end from a users
perspective

Once the user is done they click the delete button and

from their perspective it goes away…

Traceability

• …Actually for traceability reasons (as seen in Ian Collier’s
Tuesday afternoon presentation) we keep snapshots of
the images for a short period of time.

• This allows us to allow us to investigate potential user
abuse of short-lived VMs as well as being useful for
debugging other issues.

• At VM instantiation, an OpenNebula hook creates a
deferred snapshot to be executed when the machine is
SHUTDOWN.

• A cron job runs daily to check all images are the right type
and the age and deletes the relevant

• images.

Security Patching

• Just like any other machine in our infrastructure, VMs
need to have the latest security updates applied in a
timely manner.

• For Aquilon managed machines, this will be done with the
rest of our infrastructure.

• The unmanaged images come with Yum auto-update and
local Pakiti reporting turned on .

• Our user policy expressly prohibits disabling this.

• The next step is to monitor this.

Logging

• We require all our VMs running on our cloud to log

• They are configured, like the rest of our infrastructure, to
use syslog to do this

• Again, disabling this is specifically prohibited in our terms
of service.

• Again, the next step is to implement monitoring of
compliance with this.

• All of our infrastructure is configured using Quattor (As
seen in this mornings presentation by James Adams) –
investigating UGent developed OpenNebula Quattor
component, using UGent Ceph component.

• We build updated managed and unmanaged images for
users using Quattor to first install them and then we strip
them back for the unmanaged images.

• Managed VMs are available, but we re-use hostnames.

• Rather than dynamically creating the hosts when
managed VMs are launched, we use a hook when they are
removed to make a call to Aquilon’s REST interface to
reset their ‘personality’ and ‘domain’.

Quattor (Aquilon) and Our Cloud

This work has already been presented by Andrew Lahiff and
Ian Collier at ISGC – the content of the following slides has
largely been provided by them.

Much of it has also been presented at previous HEPiX’s. So
the following is a brief refresher and update.

Expanding the farm into cloud

• Initial situation: partitioned resources: Worker nodes (batch system) & Hypervisors
(cloud)

• Ideal situation: completely dynamic

– If batch system busy but cloud not busy

• Expand batch system into the cloud

– If cloud busy but batch system not busy

• Expand size of cloud, reduce amount of batch system resources

cloud batch

cloud batch

Bursting the batch system into the cloud

Bursting the batch system into the cloud

• This lead to an aspiration to Integrate cloud with batch
system

– First step: allow the batch system to expand into the cloud

• Avoid running additional third-party and/or complex services

• Leverage existing functionality in HTCondor as much as
possible

• Proof-of-concept testing carried out with StratusLab in
2013

– Successfully ran ~11000 jobs from the LHC VOs

• This will ensure our private cloud is always used

– LHC VOs can be depended upon
to provide work

Bursting the batch system into the cloud

• Based on existing power management features of
HTCondor

• Virtual machine instantiation

– ClassAds for offline machines are sent to the collector when
there are free resources in the cloud

– Negotiator can match idle jobs to the offline machines

– HTCondor rooster daemon notices this match & triggers
creation of VMs

Bursting the batch system into the cloud

• Virtual machine lifetime

– Managed by HTCondor on the VM itself. Configured to:

• Only start jobs when a health-check script is successful

• Only start new jobs for a specified time period

• Shuts down the machine after being idle for a specified period

– Virtual worker nodes are drained when free resources on
the cloud start to fall below a specified threshold

condor_collector condor_negotiator

Worker nodes

condor_startd

condor_rooster

Virtual worker

nodes

condor_startd

ARC/CREAM CEs

condor_schedd

Central manager

Offline

machine

ClassAds

Draining

Bursting the batch system into the cloud
• Previously this was a short term experiment with StratusLab

• Ability to expand batch farm into our cloud is being integrated
into our production batch system

• The challenge is to have a variable resource so closely bound
to our batch service

• HTCondor makes it much easier – elegant support for dynamic
resources

• But significant changes to monitoring

– Moved to the condor health check – no Nagios on virtual WNs

– This has in turn fed back in to the monitoring of bare metal WNs

What Next

• Consolidation of configuration, review of architecture and
design decisions

• Development of new use cases for STFC Facilities (e.g. ISIS
and CLF)

• Work as part of DataCloud H2020 project

• Work to host more Tier 1/WLCG services

• Continue work with members of the LOFAR project

• Engagement with non-HEP communities

• Start to engage with EGI Fed-cloud

Any Questions?

