

Cloud services at RAL, an Update

26th March 2015 Spring HEPiX, Oxford

George Ryall,

Frazer Barnsley, Ian Collier, Alex Dibbo, Andrew Lahiff

Overview

- Background
- Our current set up
- Self-service test & development VMs
- Traceability, security, and logging
- Links with Quattor (Aquilon)
- Expansion of the batch farm into unused capacity
- What next

Background

- Began as small experiment 3 years ago
 - Initially using StratusLab & old worker nodes
 - Initially very quick and easy to get working
 - But fragile, and upgrades and customisations always harder
- Work until last spring was implemented by graduates on 6 month rotations
 - Disruptive & variable progress
- Worked well enough to prove usefulness
- Self service VMs proved very popular, though something of an exercise in managing expectations

Background (2)

- In March 2014, we secured funding for our current hardware, I became involved –setting up the Ceph cluster
- A fresh technology evaluation led us to move to OpenNebula.
- In September secured first dedicated effort to build on the previous 2 ½ years of experiments to produce a service with a defined service level. Two staff, me full time and another half time.

Where we are now

- Just launched with a defined, if limited, service level for users across STFC.
- Integrated in to the existing Tier 1 configuration & monitoring frameworks (yet to establish cloud specific monitoring).
- Now have an extra member of staff working on the project, bringing us close to two full time equivalents.

Our current set up

- OpenNebula based cloud with a Ceph storage backend
- This has 28 Hypervisors consisting of 892 cores and 3.4TB of RAM
- We have 750TB of raw storage in the supporting Ceph cluster (as seen in Alastair Dewhurst's presentation yesterday, performance testing described in Alex Dibbo's presentation this afternoon)
- This is all connected together at 10Gb/s
- Web Front End and headnode on VMs in our HyperV production virtulisation infrastructure
- Three node MariaDB/Galera cluster for DB (again on HyperV)

Self-service test & development VMs

- First use case to be exposed to users in a pre-production way.
- Provide members of the Scientific Computing Department (~160 people) with access to VMs on demand for development work.
- Quickly provides VMs to speed up the development cycle of various services and offer a testing environment for our software developers (<1 minute to a useable machine).
- Clear terms of service and defined level of service that is currently short of production..

A simple web frontend

- To provide easy access to these VMs we have developed a simple web front-end running on a VM
- This talks to the OpenNebula head node through its XML RPC interface
- Provides a simpler, more customised interface for our users than is available through OpenNebula's sunstone interface

https://cloud. stfc.ac.uk		▼ C Q. Search	☆∉) 🕂	Â		0
SCD CLOUD	Machines				Ð	Logir	1
Home	Infrastructure						
Terms of Service	The cloud is based on OpenNebula for the virtualisation and CEPF	for the storage. For the hardware, we use					5
	 28x Dell R420 for the hypervisors 30x Dell R520 for the storage nodes						
	This gives us a total of 3.5TB of memory, 896 processing cores and	d a storage capacity of approximately 750TB .					
	OpenNebula	👧 ceph					Ļ
		• • •					

SCD CLOUD Machines			🕤 Login
Login		Federal Login	
You can access the cloud and any of your virtual machines with your Federal		ooy64575	
Credentials. By proceeding to log in, you	agree to the Terms of Service.	•••••	
		LOG IN	

User logs in with their organisation wide credentials (implemented using Kerberos)

SCD CLOUD	Machines					1	George	Ryall	•
Machines History	Machines	2 out of 3 VMs.					Creat	to Machir	20
	Name	Hostname	State	Туре	Created	CPU		le macrii	le
	Gas-Light Man-Sized	vm6.nubes.stfc.ac.uk	ACTIVE POWER OFF	ScientificLinux6	16 Mar 2015 18:08:19	1	4GB		×
		millo.nabob.bio.ac.ak	first <	< 1 > last			100		

The User is presented with a list of their current VMs, a button to launch more, and an option to view historical information

SCD CLOUD	Machines	👳 Create Mach	ine	×		💄 George Ryall 👻
Machines History	Mack You are curr	Name Type	Demagnetize Unecclesiastically			👰 Create Machine
	Name	Description		_		CPU RAM
	Gas-Light I	Description	An Aquilon managed SL6.4 instance with 1CPU and 4GB RAM		8:08:19	1 4GB 🖵 🔀
	Karmen Pa	CPU	1		4:51:33	1 4GB 🖵 🗙
		Memory	4GB			
			Close	ate		

The User clicks to "Create Machine" (because they're lazy they use our auto-generate name button)

SCD CLOUD	Machines	📮 Create Mach	ine	×		L Georg	e Ryall 👻
Machines History	Mack	Name Type	Demagnetize Unecclesiastically			E Crea	ate Machine
	Name	Description	Aquilon-SL6 ScientificLinux6	_	c	PU RAM	
	Gas-Light I	Description	An unmanaged SL6.4 instance with 1CPU and 4GB RAM	18:08	8:19	1 4GB	
	Karmen Pa	CPU	1	14:51	1:33	1 4GB	
		Memory	4GB				
			Close	eate			

The user is presented with a list of possible machine types to launch which is relevant to them

This is accomplished using OpenNebula groups and active directory user properties.

CPU and Memory are currently pre-set for each type, we can expand it later by request. We could offer a choice – but we suspect users, being users, will just select the most available with little thought.

SCD CLOUD	Machines					1	George	Ryall 👻
Machines	Machines							
History	You are currently using 3 (out of 3 VMs.				ľ	🚽 Crea	te Machine
	Name	Hostname	State	Туре	Created	CPU	RAM	
	Gas-Light Man-Sized	vm6.nubes.stfc.ac.uk	ACTIVE	ScientificLinux6	16 Mar 2015 18:08:19	1	4GB	모 🗙
	Karmen Palladized	vm28.nubes.stfc.ac.uk	POWER OFF	ScientificLinux6	17 Mar 2015 14:51:33	1	4GB	🖵 🗙
	Demagnetize Unecclesiastically	vm57.nubes.stfc.ac.uk	PENDING	ScientificLinux6	25 Mar 2015 15:38:51	1	4GB	.
			first <	1 > last				

The VM is listed as pending for about 20 seconds, whilst OpenNebula deploys it on a hypervisor

Connected (encrypted) to: QEMU (one-3587)

Once booted, the user can login with their credentials or they can SSH in with those same credentials

SCD CLOUD	Machines Dele	te Machine			×	1	George Ry	yall 👻
Machines	Mack Are you su	re you want to permanently dele	te this machine	?				
History	You are curr		_	Cance	Yes		Create I	Machine
	Name	Hostname	State	Туре	Created	CPU	RAM	
	Gas-Light Man-Sized	vm6.nubes.stfc.ac.uk	ACTIVE	ScientificLinux6	16 Mar 2015 18:08:19	1	4GB	
	Karmen Palladized	vm28.nubes.stfc.ac.uk	POWER OFF	ScientificLinux6	17 Mar 2015 14:51:33	1	4GB	
	Demagnetize Unecclesiastically	vm57.nubes.stfc.ac.uk	ACTIVE	ScientificLinux6	25 Mar 2015 15:38:51	1	4GB	
			first <	1 > last				

Once the user is done they click the delete button and from their perspective it goes away...

Traceability

- …Actually for traceability reasons (as seen in Ian Collier's Tuesday afternoon presentation) we keep snapshots of the images for a short period of time.
- This allows us to allow us to investigate potential user abuse of short-lived VMs as well as being useful for debugging other issues.
- At VM instantiation, an OpenNebula hook creates a deferred snapshot to be executed when the machine is SHUTDOWN.
- A cron job runs daily to check all images are the right type and the age and deletes the relevant
- images.

Security Patching

- Just like any other machine in our infrastructure, VMs need to have the latest security updates applied in a timely manner.
- For Aquilon managed machines, this will be done with the rest of our infrastructure.
- The unmanaged images come with Yum auto-update and local Pakiti reporting turned on .

Science & Technology Facilities Council

- Our user policy expressly prohibits disabling this.
- The next step is to monitor this.

Logging

- We require all our VMs running on our cloud to log
- They are configured, like the rest of our infrastructure, to use syslog to do this
- Again, disabling this is specifically prohibited in our terms of service.
- Again, the next step is to implement monitoring of compliance with this.

Quattor (Aquilon) and Our Cloud

- All of our infrastructure is configured using Quattor (As seen in this mornings presentation by James Adams) investigating UGent developed OpenNebula Quattor component, using UGent Ceph component.
- We build updated managed and unmanaged images for users using Quattor to first install them and then we strip them back for the unmanaged images.
- Managed VMs are available, but we re-use hostnames.

 Rather than dynamically creating the hosts when managed VMs are launched, we use a hook when they are removed to make a call to Aquilon's REST interface to reset their 'personality' and 'domain'.

Expanding the farm into cloud

This work has already been presented by Andrew Lahiff and Ian Collier at ISGC – the content of the following slides has largely been provided by them.

Much of it has also been presented at previous HEPiX's. So the following is a brief refresher and update.

- Initial situation: partitioned resources: Worker nodes (batch system) & Hypervisors (cloud)
- Ideal situation: completely dynamic
 - If batch system busy but cloud not busy
 - Expand batch system into the cloud

If cloud busy but batch system not busy

• Expand size of cloud, reduce amount of batch system resources

- This lead to an aspiration to Integrate cloud with batch system
 - First step: allow the batch system to expand into the cloud
 - Avoid running additional third-party and/or complex services
 - Leverage existing functionality in HTCondor as much as possible
- Proof-of-concept testing carried out with StratusLab in 2013
 - Successfully ran ~11000 jobs from the LHC VOs
- This will ensure our private cloud is always used
 - LHC VOs can be depended upon to provide work

- Based on existing power management features of HTCondor
- Virtual machine instantiation
 - ClassAds for offline machines are sent to the collector when there are free resources in the cloud
 - Negotiator can match idle jobs to the offline machines
 - HTCondor rooster daemon notices this match & triggers creation of VMs

• Virtual machine lifetime

- Managed by HTCondor on the VM itself. Configured to:
 - Only start jobs when a health-check script is successful
 - Only start new jobs for a specified time period
 - Shuts down the machine after being idle for a specified period
- Virtual worker nodes are drained when free resources on the cloud start to fall below a specified threshold

- Previously this was a short term experiment with StratusLab
- Ability to expand batch farm into our cloud is being integrated into our production batch system
- The challenge is to have a variable resource so closely bound to our batch service
- HTCondor makes it much easier elegant support for dynamic resources
- But significant changes to monitoring

- Moved to the condor health check no Nagios on virtual WNs
- This has in turn fed back in to the monitoring of bare metal WNs

What Next

- Consolidation of configuration, review of architecture and design decisions
- Development of new use cases for STFC Facilities (e.g. ISIS and CLF)
- Work as part of DataCloud H2020 project
- Work to host more Tier 1/WLCG services
- Continue work with members of the LOFAR project
- Engagement with non-HEP communities
- Start to engage with EGI Fed-cloud

Any Questions?

