Getting the most from the farm at the Sanger Institute

Emyr James ej4@sanger.ac.uk

Monday 23rd March, 2015

Table of contents

Overview of the Sanger

Monitoring

Weekly Farmers Standup Meeting

Lustre Reporting

The Campus

- About 900 staff at the Sanger
- ▶ 500 at the EBI
- New sequencing building under construction
- ▶ Expect about 30 spinout and startups on site in 2 years

History

- Set up in 1993
- ▶ 1998 Nematode worm Completed (97Mbp)
- 2003 Human Genome Complete (2000Mbp)
- 2004 MRSA Genome
- 2005 Current Data Centre opens
- 2008 Next Generation Sequencing, 1000 Genomes Project begons
- 2009 Joins International Cancer Genome Consortium
- ▶ 2010 UK10K Project begins
- ▶ 2013 UK10K Completed

Typical Workflow

The Cluster

- ▶ 11 Lustre Volumes, 2 more imminent, one to be retired
- ► 250TB/500TB/1PB each
- 6PB total capacity
- DDN Exascaler hardware
- Our own lustre software install
- Aim to deliver 5MB/s for each core
- ▶ IB Connected OSS OST
- ▶ 10GigE to clients
- 28PB storage overall (lustre, iRODS, NFS)
- ▶ 17,000 cores of compute mostly HP Blades

Monitoring

- Ganglia, Opsview / Nagios, Platform LSF / Tableau Analytics in production
- Graphite in test / development
- Hardware ordered for production graphite cluster
- May switch to InfluxDB
- Currently collecting standard metrics (cpu, ram, disk, network)

Application Level Monitoring

- Graphite makes it easy to add metrics
- Cron which collects
 Platform LSF Fairshare
 snapshot every 10 mins
- Has been useful for identifying cpu accounting kernel bug
- Also capturing lustre quota information for groups
- Working on real time analysis for captured data
- Pre-emptive warn of over-quota

The Weekly Report

- Generate weekly usage report for Human Genetics
- python script gets data from LSF Analytics DB (Vertica)
- Gets jpeg image and user name from Idap
- Merges the data with a LATEXtemplate using pyratemp
- Generates nicely formatted report
- A few copies handed out at the meeting

CPU Used since 2015-03-12 : Top 20 Users

	Name	Cores / Weeks	Avg. CPU Efficiency	# Jobs	Avg. Run Time (Hrs.)
9	Tommy Carstenara (tr8)	523.03 373.24	6.24 ± 0.73 6.24 ± 2.04	32469 4344	2.71 14.46
- B	automated pipeline account (mercury)	1.80	6.24 ± 2.04 4.89 ± 0.79	67647	0.01
	estratuted piletine account (mercucy)	162.91	4.89 ± 0.79 3.75 ± 1.52	148090	0.01
•	Tacinder Single (tol 6)	96.75	5.98 ± 0.58	77962	0.31
9	colmas solle (cc.e)	16.63	5.79 ± 0.85	19906	0.22
*	Stephen Summer (selff)	94.08	65.04 ± 21.75	595	2.56
	Region Samuel (mR)	8.44	65.04 ± 21.75 133.84 ± 61.21	21	3.15
-5	Jennifer Asimit (jul1)	18.63	0.33 ± 2.72	17523	3.42
2	Artistan Antina (part)	8.65	0.33 ± 2.72 0.24 ± 2.12	17523	3.60
~	Year Chra (rese)	23.25	6.24 ± 0.19	1373	2.85
0	Time Care (runs)	0.41	6.24 ± 0.19 6.10 ± 0.44	531	0.13
~	Yang Lee (rS2)	13.45	6.50 ± 7.37	144	15.07
n	read tree (rec)	6.86	6.19 ± 4.59	62	18,77
•	Deciphering Developmental Disorders (AMC)	7.65	2.48 ± 2.52	2277	1.42
	technical recolumns parami (an)	12.38	5.99 ± 1.88	671	3.23
索	Christopher Franklin («R)	13.40	6.12 ± 0.43	46	50.00
39	Carrigan Francis (10)	0.01	6.12 ± 0.43 6.18 ± 1.48	24	0.08
~	Andrea Beognicom (abbit)	12.96	11.12 ± 5.34	486	2.52
7	Anna angeres (ann)	0.10	3.35 ± 5.84	105	0.29
*	Stephan Schillich (ad7)	8.96	22.99 ± 9.43	307	1.33
32		3.92	19.70 ± 9.35	190	1.10
~	Nick Williams (sw14)	8.77	31.46 ± 13.79	66	4.44
31		0.00	0.00 ± 0.00	00	0.00
7	Mirlad Sapak (melli)	7.86	6.11 ± 0.10	13	104.03
ж		0.00	0.00 ± 0.00		0.00
*	Trips West (tell)	0.12	6.28 ± 0.06	2	9.65
7	Figure States (100)	4.72	6.18 ± 2.70	7	114.56

The Meeting

- ▶ Human Genetics get together over coffee every thursday at 3.
- Send out the report and try to get at least the top 10 to turn up.
- Stand in a circle and each user says...
 - ▶ What they were doing the science
 - Job submission strategy
 - queue
 - how many jobs
 - memory requirements
 - threading
 - Any problems ?
- Trying to get an idea of what the best practice is
- Identifying areas where
 - We need more documentation
 - May need to improve the systems any kernel / lustre bugs etc.
 - We could improve tools available to users
- Great for building a community

The Constraints

- Team / project users share quota
- Users can be members of multiple projects
- Project lifetime longer than user tenure
- Long-term need for intermediate project data
- Due to proliferation of projects, quotas overprovisioned
- We need users to tidy up after themselves
- Users need to know where the data is

The Problem

- I need to run some analyses, how much space is available for use by my project?
- ➤ You asked us to clean up the disk, where are the oldest large files so I can prioritize them for archiving or deletion?
- ▶ My project is near the quota limit. Where is all the space being used ? Who is using it ?
- This is not easy...
 - Ifs quota gives usage but no idea where files are
 - ▶ Ifs find stops as soon as you hit "permission denied"
 - find very hard on the MDS, syntax tricky for users
 - df can see usage but no granularity
 - du continues through "permission denied", hits MDS hard, slow, difficult for users
 - agedu data collection takes a very long time, updated rarely, large list of files in order of last accessed

Towards a solution - mpistat

- Guy Coates found paper on efficient parallel file tree walking using MPI
- Implemented the algorithm with a python class
- Subclassed the walker to make a fast parallel copy program
- I made it do an Istat instead.
- Get full Istat for an entire volume in a practical amount of time (tens of minutes).
- Difficulty in formatting the output file names with unprintable characters
- Solved by base 64 encoding the path in the tab formatted output file

Summary Report

- ▶ Ballpark estimate of cost to store file £150 per Terabyte per Year
- Calculate a cost for every file based on size and a time
 - ctime cost to store since creation
 - atime cost to store since last access i.e. wastage
- Keep tally of following totals, by user and by group
 - file sizes
 - file counts
 - zero length files
 - inode type how many files / directories / symlinks
 - costs
 - files with unprintable characters
 - Example report...

Lustre Treemaps

- Summary all well and good
- Want users to be able to interact with the data
- Treemaps highly suitable
- ► C++ program...
 - Parses the mpistat output
 - Builds in memory tree, node for each directory
 - Keeps track of accumlators for summaries at each node
 - Embedded http server using facebook proxygen framework
 - Can GET json representation of the tree
- Web Frontend
 - Queries the tree for json of particular subtrees to a given depth (usually 3)
 - ► Renders treemap using d3.js
- Demo...

Performance and Future Plans

Volume	Files	Size	mpistat	tree build	RAM
scratch114	5.5M	769TiB	23m	17m	5GB
scratch111	16.6M	276TiB	10m	54m	20GB
scratch113	34.6M	649TiB	69m	100m	61GB

- Need gzip encoding of response
- Speed up treebuild multithreading
- Use key-value store instead of RAM Imdb
- ► Real-Time updates tap into lustre changelog mechanism
- Or use Robin-Hood

Acknowledgemts and References

- Peter Clapham Platform LSF / Tableau Analytics / Vertica
- Simon Fraser Local Graphite Guru
- James beal Resident Lustre Expert
- Matthew Rahtz Grafana wiz, git-foo
- ▶ John Constable Systems team presence at farmers standup
- ► Tim Cutts Sanger overview slides
- Guy Coates parallel filetree walker, parallel copy
- Parallel Filetree Paper
- Parallel Filetree Website
- Josh Randall lustre tree front end
- Martin Pollard investigating lustre changelog mechanism
- HGI Github